gpt4 book ai didi

python - 在 pylearn2 中使用 RBM 预训练 ANN

转载 作者:太空狗 更新时间:2023-10-30 01:13:57 26 4
gpt4 key购买 nike

我正在尝试使用 RBM 预训练,使用 pylearn2 训练多层 ANN。我稍微修改了 pylearn2\pylearn2\scripts\tutorials\deep_trainer 中包含的名为 run_deep_trainer 的脚本。我想要一个 4 层网络,其中前 3 层由 500 个 GaussianBinaryRBM 组成,最后一个是 mlp.Softmax 层。

这是我创建的脚本:

from pylearn2.models.rbm import GaussianBinaryRBM
from pylearn2.models.softmax_regression import SoftmaxRegression
from pylearn2.models.mlp import Softmax
from pylearn2.training_algorithms.sgd import SGD
from pylearn2.costs.autoencoder import MeanSquaredReconstructionError
from pylearn2.termination_criteria import EpochCounter
from pylearn2.datasets.dense_design_matrix import DenseDesignMatrix
from pylearn2.energy_functions.rbm_energy import GRBM_Type_1
from pylearn2.blocks import StackedBlocks
from pylearn2.datasets.transformer_dataset import TransformerDataset
from pylearn2.costs.ebm_estimation import SMD
from pylearn2.training_algorithms.sgd import MonitorBasedLRAdjuster
from pylearn2.train import Train
from optparse import OptionParser

import numpy

def get_dataset_timitConsSmall():
print('loading timitConsSmall dataset...')

template = \
"""!obj:pylearn2.datasets.timitConsSmall.timit.TIMIT {
classes_number: 32,
which_set: %s,
}"""
trainset = yaml_parse.load(template % "train")
# testset = yaml_parse.load(template % "test")

print('...done loading timitConsSmall.')

return trainset

def get_grbm(structure):
n_input, n_output = structure
config = {
'nvis': n_input,
'nhid': n_output,
"irange": 0.05,
"energy_function_class": GRBM_Type_1,
"learn_sigma": True,
"init_sigma": .4,
"init_bias_hid": -2.,
"mean_vis": False,
"sigma_lr_scale": 1e-3
}

return GaussianBinaryRBM(**config)


def get_logistic_regressor(structure):
n_input, n_output = structure

layer = SoftmaxRegression(n_classes=n_output, irange=0.02, nvis=n_input)

return layer

def get_mlp_softmax(structure):
n_input, n_output = structure

layer = Softmax(n_classes=n_output, irange=0.02, layer_name='y')

return layer

def get_layer_trainer_softmax(layer, trainset):
# configs on sgd

config = {'learning_rate': 000.1,
'cost': Default(),
'batch_size': 100,
'monitoring_batches': 10,
'monitoring_dataset': trainset,
'termination_criterion': EpochCounter(max_epochs=MAX_EPOCHS_SUPERVISED),
'update_callbacks': None
}

train_algo = SGD(**config)
model = layer
return Train(model=model,
dataset=trainset,
algorithm=train_algo,
extensions=None)

def get_layer_trainer_logistic(layer, trainset):
# configs on sgd

config = {'learning_rate': 0.1,
'cost': Default(),
'batch_size': 10,
'monitoring_batches': 10,
'monitoring_dataset': trainset,
'termination_criterion': EpochCounter(max_epochs=MAX_EPOCHS_SUPERVISED),
'update_callbacks': None
}

train_algo = SGD(**config)
model = layer
return Train(model=model,
dataset=trainset,
algorithm=train_algo,
extensions=None)

def get_layer_trainer_sgd_rbm(layer, trainset):
train_algo = SGD(
learning_rate=1e-2,
batch_size=100,
# "batches_per_iter" : 2000,
monitoring_batches=20,
monitoring_dataset=trainset,
cost=SMD(corruptor=GaussianCorruptor(stdev=0.4)),
termination_criterion=EpochCounter(max_epochs=MAX_EPOCHS_UNSUPERVISED),
)
model = layer
extensions = [MonitorBasedLRAdjuster()]
return Train(model=model, algorithm=train_algo,
save_path='grbm.pkl', save_freq=1,
extensions=extensions, dataset=trainset)

def main(args=None):
trainset = get_dataset_timitConsSmall()
n_output = 32

design_matrix = trainset.get_design_matrix()
n_input = design_matrix.shape[1]

# build layers
layers = []
structure = [[n_input, 500], [500, 500], [500, 500], [500, n_output]]
# layer 0: gaussianRBM
layers.append(get_grbm(structure[0]))
# # layer 1: denoising AE
# layers.append(get_denoising_autoencoder(structure[1]))
# # layer 2: AE
# layers.append(get_autoencoder(structure[2]))
# # layer 3: logistic regression used in supervised training
# layers.append(get_logistic_regressor(structure[3]))

# layer 1: gaussianRBM
layers.append(get_grbm(structure[1]))
# layer 2: gaussianRBM
layers.append(get_grbm(structure[2]))
# layer 3: logistic regression used in supervised training
# layers.append(get_logistic_regressor(structure[3]))
layers.append(get_mlp_softmax(structure[3]))



# construct training sets for different layers
trainset = [trainset,
TransformerDataset(raw=trainset, transformer=layers[0]),
TransformerDataset(raw=trainset, transformer=StackedBlocks(layers[0:2])),
TransformerDataset(raw=trainset, transformer=StackedBlocks(layers[0:3]))]

# construct layer trainers
layer_trainers = []
layer_trainers.append(get_layer_trainer_sgd_rbm(layers[0], trainset[0]))
# layer_trainers.append(get_layer_trainer_sgd_autoencoder(layers[1], trainset[1]))
# layer_trainers.append(get_layer_trainer_sgd_autoencoder(layers[2], trainset[2]))
layer_trainers.append(get_layer_trainer_sgd_rbm(layers[1], trainset[1]))
layer_trainers.append(get_layer_trainer_sgd_rbm(layers[2], trainset[2]))
# layer_trainers.append(get_layer_trainer_logistic(layers[3], trainset[3]))
layer_trainers.append(get_layer_trainer_softmax(layers[3], trainset[3]))

# unsupervised pretraining
for i, layer_trainer in enumerate(layer_trainers[0:3]):
print('-----------------------------------')
print(' Unsupervised training layer %d, %s' % (i, layers[i].__class__))
print('-----------------------------------')
layer_trainer.main_loop()

print('\n')
print('------------------------------------------------------')
print(' Unsupervised training done! Start supervised training...')
print('------------------------------------------------------')
print('\n')

# supervised training
layer_trainers[-1].main_loop()


if __name__ == '__main__':
main()

无监督预训练部分正确,有监督训练部分出错:

Traceback (most recent call last):
File "run_deep_trainer.py", line 404, in <module>
main()
File "run_deep_trainer.py", line 400, in main
layer_trainers[-1].main_loop()
File "/home/gortolan/pylearn2/pylearn2/train.py", line 141, in main_loop
self.setup()
File "/home/gortolan/pylearn2/pylearn2/train.py", line 121, in setup
self.algorithm.setup(model=self.model, dataset=self.dataset)
File "/home/gortolan/pylearn2/pylearn2/training_algorithms/sgd.py", line 243, in setup
inf_params = [param for param in model.get_params()
File "/home/gortolan/pylearn2/pylearn2/models/model.py", line 503, in get_params
return list(self._params)
AttributeError: 'Softmax' object has no attribute '_params'

如果我在最后一层使用 SoftmaxRegression(作为模型),这意味着替换函数 get_mlp_softmax()get_layer_trainer_softmax()使用 get_logistic_regressor()get_layer_trainer_logistic(),一切正常。

似乎模型 mlp.Softmax 没有通过函数 get_params() 返回参数 (_params)。

有人知道如何解决这个问题吗?

最佳答案

问题是因为 SoftmaxRegressor 是一个模型,而 SoftmaxMLP 的层。一种修复它的方法是

def get_mlp_softmax(structure):
n_input, n_output = structure

layer = MLP(nvis=500, layers=[Softmax(n_classes=n_output, irange=0.02, layer_name='y')])

return layer

其中MLPmlp.MLP

关于python - 在 pylearn2 中使用 RBM 预训练 ANN,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33743944/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com