- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在 Python Keras 中拟合神经网络。
为了避免过度拟合,我想监控训练/验证损失并创建一个适当的回调,当训练损失远小于验证损失时停止计算。
一个回调的例子是:
callback = [EarlyStopping(monitor='val_loss', value=45, verbose=0, mode='auto')]
当训练损失与验证损失相比太少时,有什么方法可以停止训练吗?
提前致谢
最佳答案
您可以根据自己的目的创建自定义回调类。
我已经创建了一个应该符合您需要的:
class CustomEarlyStopping(Callback):
def __init__(self, ratio=0.0,
patience=0, verbose=0):
super(EarlyStopping, self).__init__()
self.ratio = ratio
self.patience = patience
self.verbose = verbose
self.wait = 0
self.stopped_epoch = 0
self.monitor_op = np.greater
def on_train_begin(self, logs=None):
self.wait = 0 # Allow instances to be re-used
def on_epoch_end(self, epoch, logs=None):
current_val = logs.get('val_loss')
current_train = logs.get('loss')
if current_val is None:
warnings.warn('Early stopping requires %s available!' %
(self.monitor), RuntimeWarning)
# If ratio current_loss / current_val_loss > self.ratio
if self.monitor_op(np.divide(current_train,current_val),self.ratio):
self.wait = 0
else:
if self.wait >= self.patience:
self.stopped_epoch = epoch
self.model.stop_training = True
self.wait += 1
def on_train_end(self, logs=None):
if self.stopped_epoch > 0 and self.verbose > 0:
print('Epoch %05d: early stopping' % (self.stopped_epoch))
我冒昧地解释说,如果 train_loss
和 validation_loss
之间的比率低于某个ratio 阈值,你想停止.此比率参数应介于 0.0
和 1.0
之间。但是,1.0
是危险的,因为验证损失和训练损失可能在训练开始时以不稳定的方式波动很大。
您可以添加一个 patience 参数,它会等待查看突破阈值是否会持续一定数量的 epoch。
使用方法例如:
callbacks = [CustomEarlyStopping(ratio=0.5, patience=2, verbose=1),
... Other callbacks ...]
...
model.fit(..., callbacks=callbacks)
在这种情况下,如果训练损失保持低于 0.5*val_loss
超过 2 个时期,它将停止。
这对你有帮助吗?
关于python - Keras Callback EarlyStopping 比较训练和验证损失,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42470604/
real adaboost Logit boost discrete adaboost 和 gentle adaboost in train cascade parameter 有什么区别.. -bt
我想为 book crossing 构建训练数据矩阵和测试数据矩阵数据集。但作为 ISBN 代码的图书 ID 可能包含字符。因此,我无法应用此代码(来自 tutorial ): #Create two
我找到了 JavaANPR 库,我想对其进行自定义以读取我所在国家/地区的车牌。 似乎包含的字母表与我们使用的字母表不同 ( http://en.wikipedia.org/wiki/FE-Schri
我有一个信用卡数据集,其中 98% 的交易是非欺诈交易,2% 是欺诈交易。 我一直在尝试在训练和测试拆分之前对多数类别进行欠采样,并在测试集上获得非常好的召回率和精度。 当我仅在训练集上进行欠采样并在
我打算: 在数据集上从头开始训练 NASNet 只重新训练 NASNet 的最后一层(迁移学习) 并比较它们的相对性能。从文档中我看到: keras.applications.nasnet.NASNe
我正在训练用于分割的 uNet 模型。训练模型后,输出全为零,我不明白为什么。 我看到建议我应该使用特定的损失函数,所以我使用了 dice 损失函数。这是因为黑色区域 (0) 比白色区域 (1) 大得
我想为新角色训练我现有的 tesseract 模型。我已经尝试过 上的教程 https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesser
我的机器中有两个 NVidia GPU,但我没有使用它们。 我的机器上运行了三个神经网络训练。当我尝试运行第四个时,脚本出现以下错误: my_user@my_machine:~/my_project/
我想在python的tensorflow中使用稀疏张量进行训练。我找到了很多代码如何做到这一点,但没有一个有效。 这里有一个示例代码来说明我的意思,它会抛出一个错误: import numpy as
我正在训练一个 keras 模型,它的最后一层是单个 sigmoid单元: output = Dense(units=1, activation='sigmoid') 我正在用一些训练数据训练这个模型
所以我需要使用我自己的数据集重新训练 Tiny YOLO。我正在使用的模型可以在这里找到:keras-yolo3 . 我开始训练并遇到多个优化器错误,添加了错误代码以防止混淆。 我注意到即使它应该使用
将 BERT 模型中的标记化范式更改为其他东西是否有意义?也许只是一个简单的单词标记化或字符级标记化? 最佳答案 这是论文“CharacterBERT: Reconciling ELMo and BE
假设我有一个非常简单的神经网络,比如多层感知器。对于每一层,激活函数都是 sigmoid 并且网络是全连接的。 在 TensorFlow 中,这可能是这样定义的: sess = tf.Inte
有没有办法在 PyBrain 中保存和恢复经过训练的神经网络,这样我每次运行脚本时都不必重新训练它? 最佳答案 PyBrain 的神经网络可以使用 python 内置的 pickle/cPickle
我尝试使用 Keras 训练一个对手写数字进行分类的 CNN 模型,但训练的准确度很低(低于 10%)并且误差很大。我尝试了一个简单的神经网络,但没有效果。 这是我的代码。 import tensor
我在 Windows 7 64 位上使用 tesseract 3.0.1。我用一种新语言训练图书馆。 我的示例数据间隔非常好。当我为每个角色的盒子定义坐标时,盒子紧贴角色有多重要?我使用其中一个插件,
如何对由 dropout 产生的许多变薄层进行平均?在测试阶段要使用哪些权重?我真的很困惑这个。因为每个变薄的层都会学习一组不同的权重。那么反向传播是为每个细化网络单独完成的吗?这些细化网络之间的权重
我尝试训练超正方语言。我正在使用 Tess4J 进行 OCR 处理。我使用jTessBoxEditor和SerakTesseractTrainer进行训练操作。准备好训练数据后,我将其放在 Tesse
我正在构建一个 Keras 模型,将数据分类为 3000 个不同的类别,我的训练数据由大量样本组成,因此在用一种热编码对训练输出进行编码后,数据非常大(item_count * 3000 * 的大小)
关闭。这个问题需要多问focused 。目前不接受答案。 想要改进此问题吗?更新问题,使其仅关注一个问题 editing this post . 已关闭 8 年前。 Improve this ques
我是一名优秀的程序员,十分优秀!