gpt4 book ai didi

python - 在 GPU 上运行时使用 TensorFlow 内存 : why does it look like not all memory is used?

转载 作者:太空狗 更新时间:2023-10-30 01:11:40 25 4
gpt4 key购买 nike

这是我在此处发布的问题的跟进:Memory error with larger images when running convolutional neural network using TensorFlow on AWS instance g2.2xlarge

我使用 TensorFlow 在 Python 中构建了一个 CNN 模型,并在 NVIDIA GRID K520 GPU 上运行它。它在 64x64 图像上运行良好,但在 128x128 图像上产生内存错误(即使输入仅包含 1 张图像)。

错误显示尝试分配 2.00GiB 内存不足。2GiB 是我的第一个全连接层的大小(输入:128*128*2(channels) code> 输出:128*128 * 4 bytes = 2.14748 GB = 2.0 GiB).

来自 here ,我可以看到 GRID K520 有 8GB = 7.45GiB 内存。当我开始运行我的代码时,我还会看到输出:Total memory: 3.94GiB, Free memory: 3.91GiB

我的问题是,所有这些数字之间的关系是什么:如果 GPU 上有 7.45GiB 内存,为什么总内存只有 3.94GiB,最重要的是,为什么 GPU 不能分配 2GiB 内存,就在上面总内存的一半? (我不是计算机科学家,所以详细的回答很有值(value)。)

一些更具体的信息以备有用:我尝试使用 allow_growthper_process_gpu_memory_fraction。仍然出现内存错误,还有一些内存统计信息(如果有人能向我解释这些数字,我将不胜感激):

allow_growth = True
Stats:
Limit: 3878682624
InUse: 2148557312
MaxInUse: 2148557312
NumAllocs: 13
MaxAllocSize: 2147483648

allow_growth = False
Stats:
Limit: 3878682624
InUse: 3878682624
MaxInUse: 3878682624
NumAllocs: 13
MaxAllocSize: 3877822976

per_process_gpu_memory_fraction = 0.5
allow_growth = False
Stats:
Limit: 2116026368
InUse: 859648
MaxInUse: 859648
NumAllocs: 12
MaxAllocSize: 409600

per_process_gpu_memory_fraction = 0.5
allow_growth = True
Stats:
Limit: 2116026368
InUse: 1073664
MaxInUse: 1073664
NumAllocs: 12
MaxAllocSize: 623616

最小工作示例:虚拟训练集与我输入的图像大小相同,只有一个全连接层(完整模型代码为 here )。此示例适用于大小输入:

X_train = np.random.rand(1, 64, 64, 2)
Y_train = np.random.rand(1, 64, 64)

但不适用于尺寸输入

X_train = np.random.rand(1, 128, 128, 2)
Y_train = np.random.rand(1, 128, 128)

代码:

import numpy as np
import tensorflow as tf


# Dummy training set:
X_train = np.random.rand(1, 128, 128, 2)
Y_train = np.random.rand(1, 128, 128)
print('X_train.shape at input = ', X_train.shape, ", Size = ",
X_train.shape[0] * X_train.shape[1] * X_train.shape[2]
* X_train.shape[3])
print('Y_train.shape at input = ', Y_train.shape, ", Size = ",
Y_train.shape[0] * Y_train.shape[1] * Y_train.shape[2])


def create_placeholders(n_H0, n_W0):

x = tf.placeholder(tf.float32, shape=[None, n_H0, n_W0, 2], name='x')
y = tf.placeholder(tf.float32, shape=[None, n_H0, n_W0], name='y')

return x, y


def forward_propagation(x):

x_temp = tf.contrib.layers.flatten(x) # size (n_im, n_H0 * n_W0 * 2)
n_out = np.int(x.shape[1] * x.shape[2]) # size (n_im, n_H0 * n_W0)

# FC: input size (n_im, n_H0 * n_W0 * 2), output size (n_im, n_H0 * n_W0)
FC1 = tf.contrib.layers.fully_connected(
x_temp,
n_out,
activation_fn=tf.tanh,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=tf.contrib.layers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=None,
biases_regularizer=None,
reuse=True,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope='fc1')

# Reshape output from FC layer into array of size (n_im, n_H0, n_W0, 1):
FC_M = tf.reshape(FC1, [tf.shape(x)[0], tf.shape(x)[1], tf.shape(x)[2], 1])

return FC_M


def compute_cost(FC_M, Y):

cost = tf.square(FC_M - Y)

return cost


def model(X_train, Y_train, learning_rate=0.0001, num_epochs=100):

(m, n_H0, n_W0, _) = X_train.shape

# Create Placeholders
X, Y = create_placeholders(n_H0, n_W0)

# Build the forward propagation
DECONV = forward_propagation(X)

# Add cost function to tf graph
cost = compute_cost(DECONV, Y)

# Backpropagation
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)

# Initialize all the variables globally
init = tf.global_variables_initializer()

# Memory config
config = tf.ConfigProto()
config.gpu_options.allow_growth = True

# Start the session to compute the tf graph
with tf.Session(config = config) as sess:

# Initialization
sess.run(init)

# Training loop
for epoch in range(num_epochs):

_, temp_cost = sess.run([optimizer, cost],
feed_dict={X: X_train, Y: Y_train})

print ('EPOCH = ', epoch, 'COST = ', np.mean(temp_cost))


# Finally run the model
model(X_train, Y_train, learning_rate=0.00002, num_epochs=5)

回溯:

W tensorflow/core/common_runtime/bfc_allocator.cc:274] ****************************************************************************************************
W tensorflow/core/common_runtime/bfc_allocator.cc:275] Ran out of memory trying to allocate 2.00GiB. See logs for memory state.
W tensorflow/core/framework/op_kernel.cc:983] Internal: Dst tensor is not initialized.
E tensorflow/core/common_runtime/executor.cc:594] Executor failed to create kernel. Internal: Dst tensor is not initialized.
[[Node: zeros = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [32768,16384] values: [0 0 0]...>, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]
Traceback (most recent call last):
File "myAutomap_MinExample.py", line 99, in <module>
num_epochs=5)
File "myAutomap_MinExample.py", line 85, in model
sess.run(init)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 767, in run
run_metadata_ptr)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 965, in _run
feed_dict_string, options, run_metadata)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1015, in _do_run
target_list, options, run_metadata)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1035, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InternalError: Dst tensor is not initialized.
[[Node: zeros = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [32768,16384] values: [0 0 0]...>, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]

Caused by op u'zeros', defined at:
File "myAutomap_MinExample.py", line 99, in <module>
num_epochs=5)
File "myAutomap_MinExample.py", line 72, in model
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/training/optimizer.py", line 289, in minimize
name=name)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/training/optimizer.py", line 403, in apply_gradients
self._create_slots(var_list)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/training/rmsprop.py", line 103, in _create_slots
self._zeros_slot(v, "momentum", self._name)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/training/optimizer.py", line 647, in _zeros_slot
named_slots[var] = slot_creator.create_zeros_slot(var, op_name)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/training/slot_creator.py", line 121, in create_zeros_slot
val = array_ops.zeros(primary.get_shape().as_list(), dtype=dtype)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/ops/array_ops.py", line 1352, in zeros
output = constant(zero, shape=shape, dtype=dtype, name=name)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 103, in constant
attrs={"value": tensor_value, "dtype": dtype_value}, name=name).outputs[0]
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2327, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/ubuntu/.local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1226, in __init__
self._traceback = _extract_stack()

InternalError (see above for traceback): Dst tensor is not initialized.
[[Node: zeros = Const[dtype=DT_FLOAT, value=Tensor<type: float shape: [32768,16384] values: [0 0 0]...>, _device="/job:localhost/replica:0/task:0/gpu:0"]()]]

最佳答案

如果您可以上传您的代码或至少一个最小的示例以查看发生了什么,那就太好了。只看这些数字,似乎 allow_growth 正在正常工作,也就是说,它只分配它实际需要的内存量(上面计算的 2.148 GiB)。

您还可以提供所收到错误的完整控制台输出。我的猜测是,您将来自 TF 资源分配器的非致命警告消息与导致程序失败的实际错误混淆了。

这是否与您看到的消息相似?
W tensorflow/core/common_runtime/bfc_allocator.cc:217] 分配器 (GPU_1_bfc) 内存不足,试图分配 2.55GiB。调用者表示这不是失败,但可能意味着如果有更多内存可用,则可能会提高性能。

因为这只是一个警告,除非您想优化代码的运行时性能,否则您可以忽略它。它不会导致您的程序失败。

关于python - 在 GPU 上运行时使用 TensorFlow 内存 : why does it look like not all memory is used?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48725179/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com