- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
假设您有一个区域(开始、结束)坐标的 DataFrame 和另一个可能位于或不属于给定区域内的位置的 DataFrame。例如:
region = pd.DataFrame({'chromosome': [1, 1, 1, 1, 2, 2, 2, 2], 'start': [1000, 2000, 3000, 4000, 1000, 2000, 3000, 4000], 'end': [2000, 3000, 4000, 5000, 2000, 3000, 4000, 5000]})
position = pd.DataFrame({'chromosome': [1, 2, 1, 3, 2, 1, 1], 'BP': [1500, 1100, 10000, 2200, 3300, 400, 5000]})
print region
print position
chromosome end start
0 1 2000 1000
1 1 3000 2000
2 1 4000 3000
3 1 5000 4000
4 2 2000 1000
5 2 3000 2000
6 2 4000 3000
7 2 5000 4000
BP chromosome
0 1500 1
1 1100 2
2 10000 1
3 2200 3
4 3300 2
5 400 1
6 5000 1
如果满足以下条件,则位置落在区域内:
position['BP'] >= region['start'] &
position['BP'] <= region['end'] &
position['chromosome'] == region['chromosome']
每个位置保证最多落在一个区域中,尽管它可能不落在任何区域中。
合并这两个数据框的最佳方法是什么,以便它附加额外的列以定位它所在的区域(如果它落在任何区域中)。在这种情况下大致给出以下输出:
BP chromosome start end
0 1500 1 1000 2000
1 1100 2 1000 2000
2 10000 1 NA NA
3 2200 3 NA NA
4 3300 2 3000 4000
5 400 1 NA NA
6 5000 1 4000 5000
一种方法是编写一个函数来计算我想要的关系,然后使用 DataFrame.apply 方法,如下所示:
def within(pos, regs):
istrue = (pos.loc['chromosome'] == regs['chromosome']) & (pos.loc['BP'] >= regs['start']) & (pos.loc['BP'] <= regs['end'])
if istrue.any():
ind = regs.index[istrue].values[0]
return(regs.loc[ind ,['start', 'end']])
else:
return(pd.Series([None, None], index=['start', 'end']))
position[['start', 'end']] = position.apply(lambda x: within(x, region), axis=1)
print position
BP chromosome start end
0 1500 1 1000 2000
1 1100 2 1000 2000
2 10000 1 NaN NaN
3 2200 3 NaN NaN
4 3300 2 3000 4000
5 400 1 NaN NaN
6 5000 1 4000 5000
但我希望有一种比在 O(N) 时间内进行每次比较更优化的方法。谢谢!
最佳答案
一个解决方案是在 chromosome
上进行内连接,排除违规行,然后使用 position
进行左连接:
>>> df = pd.merge(position, region, on='chromosome', how='inner')
>>> idx = (df['BP'] < df['start']) | (df['end'] < df['BP']) # violating rows
>>> pd.merge(position, df[~idx], on=['BP', 'chromosome'], how='left')
BP chromosome end start
0 1500 1 2000 1000
1 1100 2 2000 1000
2 10000 1 NaN NaN
3 2200 3 NaN NaN
4 3300 2 4000 3000
5 400 1 NaN NaN
6 5000 1 5000 4000
关于python - 基于多列关系合并 Pandas 数据框,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24922315/
我有几个长度不等的 vector ,我想对其进行cbind。我将 vector 放入列表中,并尝试结合使用do.call(cbind, ...): nm <- list(1:8, 3:8, 1:5)
合并(合并)两个 JSONObjects 的最佳方式是什么? JSONObject o1 = { "one": "1", "two": "2", "three": "3" }
我在一个表中有许多空间实体,其中有一个名为 Boundaries 的 geometry 字段。我想生成一个具有简化形状/几何图形的 GeoJson 文件。 这是我的第一次尝试: var entitie
谁能说出为什么这个选择返回 3.0 而不是 3.5: SELECT coalesce(1.0*(7/2),0) as foo 这个返回 3: SELECT coalesce(7/2,0) as foo
首先抱歉,也许这个问题已经提出,但我找不到任何可以帮助我的东西,可能是因为我对 XSLT 缺乏了解。 我有以下 XML: 0 OK
有时用户会使用 Windows 资源管理器复制文件并在他们应该执行 svn 存储库级别的复制或合并时提交它们。因此,SVN 没有正确跟踪这些变化。一旦我发现这一点,损坏显然已经完成,并且可能已经对相关
我想组合/堆叠 2 个不同列的值并获得唯一值。 如果范围相邻,则可以正常工作。例如: =UNIQUE(FILTERXML(""&SUBSTITUTE(TEXTJOIN(",",TRUE,TRANSPO
使用iTextSharp,如何将多个PDF合并为一个PDF,而又不丢失每个PDF中的“表单字段”及其属性? (我希望有一个使用来自数据库的流的示例,但文件系统也可以) 我发现this code可以正常
是否有一个合并函数可以优先考虑公共(public)变量中的非缺失值? 考虑以下示例。 首先,我们生成两个 data.frames,它们具有相同的 ID,但在特定变量上有互补的缺失值: set.seed
我们正在尝试实现 ALM Rangers 在最新的 Visual Studio TFS Branching and Merging Guide 中描述的“基本双分支计划”。 .从指导: The bas
我在不同目录(3个不同名称)中有很多(3个只是一个例子)文本文件,如下所示: 目录:A,文件名:run.txt 格式:txt制表符分隔 ; file one 10 0.2 0.5 0.
我有一张包含学生等级关系的表: Student Grade StartDate EndDate 1 1 09/01/2009 NULL 2
我在学习 https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/reference/working-with-associatio
我觉得我有世界上最简单的 SVN 用例: 我有一个文件,Test.java在 trunk SVN的。 我分行trunk至 dev-branch . 我搬家Test.java进入 com/mycompa
我有两个数据框,其中一些列名称相同,而另一些列名称不同。数据框看起来像这样: df1 ID hello world hockey soccer 1 1 NA NA
Elasticsearch 中是否缺少以扁平化形式(多个子/子aggs)返回结果的方法? 例如,当前我正在尝试获取所有产品类型及其状态(在线/离线)。 这就是我最终得到的: aggs [ { key:
如何合并如下所示的 map : Map1 = Map(1 -> Class1(1), 2 -> Class1(2)) Map2 = Map(2 -> Class2(1), 3 -> Class2(2)
我试图通过从netezza服务器导入数据来合并两个数据集。 以下是数据集,其数字为,ID为,字母为,名称为: 下表都是使用命令从netezza导入的: sqoop import --connect n
我有两个数组 $array1 = array('first', 'second', 'third', 'fourth'); $array2 = array('first', 'third', 'fou
我正在 SQL Server 中运行合并。在我的更新中,我只想在值发生更改时更新该行。有一个版本行在每次更新时都会递增。下面是一个例子: MERGE Employee as tgt USING (SE
我是一名优秀的程序员,十分优秀!