- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试使用 StanfordNERTagger 和 nltk 从一段文本中提取关键字。
docText="John Donk works for POI. Brian Jones wants to meet with Xyz Corp. for measuring POI's Short Term performance Metrics."
words = re.split("\W+",docText)
stops = set(stopwords.words("english"))
#remove stop words from the list
words = [w for w in words if w not in stops and len(w) > 2]
str = " ".join(words)
print str
stn = StanfordNERTagger('english.all.3class.distsim.crf.ser.gz')
stp = StanfordPOSTagger('english-bidirectional-distsim.tagger')
stanfordPosTagList=[word for word,pos in stp.tag(str.split()) if pos == 'NNP']
print "Stanford POS Tagged"
print stanfordPosTagList
tagged = stn.tag(stanfordPosTagList)
print tagged
这给了我
John Donk works POI Brian Jones wants meet Xyz Corp measuring POI Short Term performance Metrics
Stanford POS Tagged
[u'John', u'Donk', u'POI', u'Brian', u'Jones', u'Xyz', u'Corp', u'POI', u'Short', u'Term']
[(u'John', u'PERSON'), (u'Donk', u'PERSON'), (u'POI', u'ORGANIZATION'), (u'Brian', u'ORGANIZATION'), (u'Jones', u'ORGANIZATION'), (u'Xyz', u'ORGANIZATION'), (u'Corp', u'ORGANIZATION'), (u'POI', u'O'), (u'Short', u'O'), (u'Term', u'O')]
很明显,Short
和 Term
之类的东西被标记为 NNP
。我拥有的数据包含许多这样的实例,其中非 NNP
单词被大写。这可能是由于拼写错误或者它们是标题。我对此没有太多控制权。
我如何解析或清理数据,以便我可以检测到非 NNP
术语,即使它可能被大写? 我不希望像 Short
和 Term
这样的术语被归类为 NNP
此外,不确定为什么 John Donk
被抓获,但 Brian Jones
却没有。可能是因为我的数据中有其他大写的非 NNP
吗?这会对 StanfordNERTagger
处理其他一切的方式产生影响吗?
更新,一种可能的解决方案
这是我打算做的
NNP
那么我们知道原来的词也一定是NNP
这是我尝试做的
str = " ".join(words)
print str
stp = StanfordPOSTagger('english-bidirectional-distsim.tagger')
for word in str.split():
wl = word.lower()
print wl
w,pos = stp.tag(wl)
print pos
if pos=="NNP":
print "Got NNP"
print w
但这给了我错误
John Donk works POI Jones wants meet Xyz Corp measuring POI short term performance metrics
john
Traceback (most recent call last):
File "X:\crp.py", line 37, in <module>
w,pos = stp.tag(wl)
ValueError: too many values to unpack
我尝试了多种方法,但总是会出现一些错误。 如何标记单个单词?
我不想将整个字符串转换为小写然后标记。如果我这样做,StanfordPOSTagger
返回一个空字符串
最佳答案
首先,查看您的其他问题以设置从命令行或 Python 调用 Stanford CoreNLP:nltk : How to prevent stemming of proper nouns .
对于正确的大小写句子,我们看到 NER 正常工作:
>>> from corenlp import StanfordCoreNLP
>>> nlp = StanfordCoreNLP('http://localhost:9000')
>>> text = ('John Donk works POI Jones wants meet Xyz Corp measuring POI short term performance metrics. '
... 'john donk works poi jones wants meet xyz corp measuring poi short term performance metrics')
>>> output = nlp.annotate(text, properties={'annotators': 'tokenize,ssplit,pos,ner', 'outputFormat': 'json'})
>>> annotated_sent0 = output['sentences'][0]
>>> annotated_sent1 = output['sentences'][1]
>>> for token in annotated_sent0['tokens']:
... print token['word'], token['lemma'], token['pos'], token['ner']
...
John John NNP PERSON
Donk Donk NNP PERSON
works work VBZ O
POI POI NNP ORGANIZATION
Jones Jones NNP ORGANIZATION
wants want VBZ O
meet meet VB O
Xyz Xyz NNP ORGANIZATION
Corp Corp NNP ORGANIZATION
measuring measure VBG O
POI poi NN O
short short JJ O
term term NN O
performance performance NN O
metrics metric NNS O
. . . O
对于小写的句子,你不会为 POS 标签或任何 NER 标签得到 NNP
:
>>> for token in annotated_sent1['tokens']:
... print token['word'], token['lemma'], token['pos'], token['ner']
...
john john NN O
donk donk JJ O
works work NNS O
poi poi VBP O
jones jone NNS O
wants want VBZ O
meet meet VB O
xyz xyz NN O
corp corp NN O
measuring measure VBG O
poi poi NN O
short short JJ O
term term NN O
performance performance NN O
metrics metric NNS O
所以你的问题应该是:
在回答了这些问题之后,您可以继续决定您真正想用 NER 标签做什么,即
如果输入是小写的,这是因为您构建 NLP 工具链的方式,那么
如果输入是小写的,因为原始数据是小写的,那么:
如果输入有错误的大小写,例如`Some big Some Small but not all are Proper Noun, then
关于python - nltk StanfordNERTagger : How to get proper nouns without capitalization,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34439208/
NLTK 感知器标记器的标记集是什么?预训练模型使用的语料库是什么? 我试图从NLTK网站上找到官方信息。但他们没有那个。 最佳答案 来自 https://github.com/nltk/nltk/p
我无法理解这两者之间的区别。不过,我了解到word_tokenize将Penn-Treebank用于标记化目的。但TweetTokenizer上的任何内容都不可用。对于哪种类型的数据,我应该使用Twe
我正在学习 NLTK 和我的 mac 工作正常,除非我在 FreqDist() 上遇到问题。 (我看到另一个关于 FreqDist() 的问题,但他收到了不同的错误消息。TypeError: unha
我尝试了正则表达式词干分析器,但我得到了数百个不相关的标记。我只是对“播放”词干感兴趣。这是我正在使用的代码: import nltk from nltk.book import * f = open
我正在尝试使用 NLTK 命名实体标记器来识别各种命名实体。在使用 Python 进行自然语言处理一书中,他们提供了常用命名实体的列表(表 7.4,如果有人好奇的话),其中包括:日期 6 月,2008
我有很多文本数据,我想进行分类。我逐 block 递增地获取这些数据(例如 500 个样本)。我想用这些 block 在 NLTK 中对 NaiveBayesClassifier 进行训练,但要进行零
我在尝试运行实体提取功能时遇到问题。我相信这是版本差异。以下工作示例在 2.0.4 中运行,但不在 3.0 中运行。我确实将一个函数调用:batch_ne_chunk 更改为:nltk.ne_chun
我正在使用 docker 运行一个使用 nltk、languagetool 等的 NLP 系统... 当我使用 docker-compose build --build-arg env=dev我收到警
我正在检查 NLTK 的命名实体识别功能。是否可以找出提取出的哪个关键字与原文最相关?另外,是否可以知道提取的关键字的类型(人/组织)? 最佳答案 如果你有一个训练有素的标注器,你可以先标注你的文本,
我用过这个代码: # Step 1 : TOKENIZE from nltk.tokenize import * words = word_tokenize(text) # Step 2 : POS
当我运行 nltk.gaac.demo() 时 如果我错过了什么,你能帮我吗?我收到以下错误。 我使用的是nltk 3.0.1 Python 3.4.1 (v3.4.1:c0e311e010fc, M
我刚刚读了一篇关于如何使用 MALLET 进行主题建模的精彩文章,但我在网上找不到任何将 MALLET 与 NLTK 进行比较的内容,而我已经有过一些经验。 它们之间的主要区别是什么? MALLET
我试过这个,但它不起作用 from nltk.corpus import stopwords stopwords_list = stopwords.words('arabic') print(stop
我正在构建一个同时使用 NLTK 和 Spacy 的应用程序,并通过 Poetry 管理依赖项。我可以通过将此行添加到我的 pyproject.toml 来下载 Spacy 数据。下 [tool.po
我正在尝试使用 RegexpTokenizer 对文本进行分词。 代码: from nltk.tokenize import RegexpTokenizer #from nltk.tokenize i
我很好奇是否有人熟悉使用 NLTK's BLEU score calculation 之间的区别和 SacreBLEU library . 特别是,我使用了两个库的句子 BLEU 分数,对整个数据集进
我正在使用 nltk.word_tokenize用于标记一些包含编程语言、框架等的句子,这些句子被错误标记。 例如: >>> tokenize.word_tokenize("I work with C
我无法理解两者之间的区别。不过,我开始知道 word_tokenize 使用 Penn-Treebank 进行标记化。但是 TweetTokenizer 上没有任何内容可用。对于哪种数据,我应该使用
我需要对多种语言的文本进行名称实体提取:西类牙语、葡萄牙语、希腊语、捷克语、中文。 是否有这两个功能的所有支持语言的列表?是否有使用其他语料库的方法,以便可以包含这些语言? 最佳答案 默认情况下,这两
我是 python 的新手并使用 nltk,所以实际上我有一个非常基本的问题,但在任何地方都找不到答案。 我想知道什么时候在 nltk 模块的函数之前使用 nltk.。我正在处理一些任务,在某些情况下
我是一名优秀的程序员,十分优秀!