- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我一直在四处寻找,试图弄清楚如何正确地对我的数据透视表进行排序,但我没有任何运气。
client unit task hours month
0 A DVADA Account Management 6.50 January
1 A DVADA Buying 1.25 January
2 A DVADA Meeting / Call 0.50 January
3 A DVADA Account Management 3.00 January
4 A DVADA Billing 2.50 February
5 A DVADA Account Management 6.50 February
6 A DVADA Buying 1.25 February
7 A DVADA Meeting / Call 0.50 February
8 A DVADA Account Management 3.00 February
9 A DVADA Billing 2.50 February
10 A DVADA Billing 2.50 December
11 A DVADA Account Management 6.50 December
12 A DVADA Buying 1.25 December
13 A DVADA Meeting / Call 0.50 December
14 A DVADA Account Management 3.00 December
15 A DVADA Billing 2.50 December
16 A DVADA Account Management 6.50 August
17 A DVADA Buying 1.25 August
18 A DVADA Meeting / Call 0.50 August
19 A DVADA Account Management 3.00 August
20 A DVADA Account Management 6.50 April
21 A DVADA Buying 1.25 April
22 A DVADA Meeting / Call 0.50 April
23 A DVADA Account Management 3.00 April
24 B DVADA Account Management 6.50 January
25 B DVADA Buying 1.25 January
26 B DVADA Meeting / Call 0.50 January
27 B DVADA Account Management 3.00 January
28 B DVADA Billing 2.50 February
29 B DVADA Account Management 6.50 February
30 B DVADA Buying 1.25 February
31 B DVADA Meeting / Call 0.50 February
32 B DVADA Account Management 3.00 February
33 B DVADA Billing 2.50 February
34 B DVADA Billing 2.50 December
35 B DVADA Account Management 6.50 December
36 B DVADA Buying 1.25 December
37 B DVADA Meeting / Call 0.50 December
38 B DVADA Account Management 3.00 December
39 B DVADA Billing 2.50 December
40 B DVADA Account Management 6.50 August
41 B DVADA Buying 1.25 August
42 B DVADA Meeting / Call 0.50 August
43 B DVADA Account Management 3.00 August
44 B DVADA Account Management 6.50 April
45 B DVADA Buying 1.25 April
46 B DVADA Meeting / Call 0.50 April
47 C DVADA Account Management 3.00 April
48 C DVADA Account Management 6.50 January
49 C DVADA Buying 1.25 January
50 C DVADA Meeting / Call 0.50 January
51 C DVADA Account Management 3.00 January
52 C DVADA Billing 2.50 February
53 C DVADA Account Management 6.50 February
54 C DVADA Buying 1.25 February
55 C DVADA Meeting / Call 0.50 February
56 C DVADA Account Management 3.00 February
57 C DVADA Billing 2.50 February
58 C DVADA Billing 2.50 December
59 C DVADA Account Management 6.50 December
60 C DVADA Buying 1.25 December
61 C DVADA Meeting / Call 0.50 December
62 C DVADA Account Management 3.00 December
63 C DVADA Billing 2.50 December
64 C DVADA Account Management 6.50 August
65 C DVADA Buying 1.25 August
66 C DVADA Meeting / Call 0.50 August
67 C DVADA Account Management 3.00 August
68 C DVADA Account Management 6.50 April
69 C DVADA Buying 1.25 April
70 C DVADA Meeting / Call 0.50 April
71 C DVADA Account Management 3.00 April
df = pd.pivot_table(vp_clients, values='hours', index=['client', 'month'], aggfunc=sum)
返回一个包含三列(客户、月份、小时)的数据透视表。每个客户有 12 个月(1 月至 12 月),每个月都有一个小时。
hours
client month
A April 203.50
August 227.75
December 159.75
February 203.25
January 199.25
B April 203.50
August 227.75
December 159.75
February 203.25
January 199.25
C April 203.50
August 227.75
December 159.75
February 203.25
January 199.25
我想按月份对这个数据透视表进行排序,但保留客户列。
hours
client month
A January 203.50
February 227.75
March 159.75
April 203.25
May 199.90
B January 203.50
February 227.75
March 159.75
April 203.25
May 199.90
C January 203.50
February 227.75
March 159.75
April 203.25
May 199.90
Scott 的以下回答解决了排序问题。现在我想为每个客户添加一行,其中包含使用的总小时数。
hours
client month
A January 203.50
February 227.75
March 159.75
April 203.25
May 199.90
Total 1000.34
B January 203.50
February 227.75
March 159.75
April 203.25
May 199.90
Total 1000.34
C January 203.50
February 227.75
March 159.75
April 203.25
May 199.90
Total 1000.34
任何帮助将不胜感激
最佳答案
vp_clients['month'] = pd.Categorical(vp_clients['month'],
ordered=True,
categories=['January','February','March',
'April','May','June','July',
'August','September','October',
'November','December','Total'])
df = pd.pivot_table(vp_clients, values='hours', index=['client', 'month'], aggfunc=sum)
df = df.dropna()
pd.concat([df,df.sum(level=0).assign(month='Total').set_index('month', append=True)]).sort_index()
输出:
hours
client month
A January 11.25
February 16.25
April 11.25
August 11.25
December 16.25
Total 66.25
B January 11.25
February 16.25
April 8.25
August 11.25
December 16.25
Total 63.25
C January 11.25
February 16.25
April 14.25
August 11.25
December 16.25
Total 69.25
让我们使用 pd.Categorical
:
vp_clients['month'] = pd.Categorical(vp_clients['month'],
ordered=True,
categories=['January','February','March',
'April','May','June','July',
'August','September','October',
'November','December'])
df = pd.pivot_table(vp_clients, values='hours', index=['client', 'month'], aggfunc=sum)
df.dropna()
输出:
hours
client month
A January 11.25
February 16.25
April 11.25
August 11.25
December 16.25
B January 11.25
February 16.25
April 8.25
August 11.25
December 16.25
C January 11.25
February 16.25
April 14.25
August 11.25
December 16.25
关于python - 在 Pandas pivot_table 中排序,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48913757/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!