- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我设置了一个简单的实验来检查多核 CPU 在运行 sklearn GridSearchCV
和 KNeighborsClassifier
时的重要性。我得到的结果让我感到惊讶,我想知道我是否误解了多核的好处,或者我没有做对。
完成 2-8 个作业的时间没有差异。怎么来的 ?我注意到 CPU 性能选项卡上的差异。当第一个单元格运行时,CPU 使用率约为 13%,最后一个单元格逐渐增加到 100%。我期待它能更快地完成。也许不是线性更快,也就是 8 个作业会比 4 个作业快 2 倍,但会快一点。
我是这样设置的:
我用的是jupyter-notebook,cell指的是jupyter-notebook cell。
我已经加载了 MNIST 并在 X_play
中使用了 0.05
测试大小 3000
位。
from sklearn.datasets import fetch_mldata
from sklearn.model_selection import train_test_split
mnist = fetch_mldata('MNIST original')
X, y = mnist["data"], mnist['target']
X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:]
_, X_play, _, y_play = train_test_split(X_train, y_train, test_size=0.05, random_state=42, stratify=y_train, shuffle=True)
在下一个单元格中,我设置了 KNN
和 GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
knn_clf = KNeighborsClassifier()
param_grid = [{'weights': ["uniform", "distance"], 'n_neighbors': [3, 4, 5]}]
然后我为 8 个 n_jobs 值做了 8 个单元格。我的 CPU 是 i7-4770,4 核 8 线程。
grid_search = GridSearchCV(knn_clf, param_grid, cv=3, verbose=3, n_jobs=N_JOB_1_TO_8)
grid_search.fit(X_play, y_play)
结果
Parallel(n_jobs=1)]: Done 18 out of 18 | elapsed: 2.0min finished
Parallel(n_jobs=2)]: Done 18 out of 18 | elapsed: 1.4min finished
Parallel(n_jobs=3)]: Done 18 out of 18 | elapsed: 1.3min finished
Parallel(n_jobs=4)]: Done 18 out of 18 | elapsed: 1.3min finished
Parallel(n_jobs=5)]: Done 18 out of 18 | elapsed: 1.4min finished
Parallel(n_jobs=6)]: Done 18 out of 18 | elapsed: 1.4min finished
Parallel(n_jobs=7)]: Done 18 out of 18 | elapsed: 1.4min finished
Parallel(n_jobs=8)]: Done 18 out of 18 | elapsed: 1.4min finished
第二次测试
随机森林分类器的使用要好得多。测试大小为 0.5
,30000
图像。
from sklearn.ensemble import RandomForestClassifier
rf_clf = RandomForestClassifier()
param_grid = [{'n_estimators': [20, 30, 40, 50, 60], 'max_features': [100, 200, 300, 400, 500], 'criterion': ['gini', 'entropy']}]
Parallel(n_jobs=1)]: Done 150 out of 150 | elapsed: 110.9min finished
Parallel(n_jobs=2)]: Done 150 out of 150 | elapsed: 56.8min finished
Parallel(n_jobs=3)]: Done 150 out of 150 | elapsed: 39.3min finished
Parallel(n_jobs=4)]: Done 150 out of 150 | elapsed: 35.3min finished
Parallel(n_jobs=5)]: Done 150 out of 150 | elapsed: 36.0min finished
Parallel(n_jobs=6)]: Done 150 out of 150 | elapsed: 34.4min finished
Parallel(n_jobs=7)]: Done 150 out of 150 | elapsed: 32.1min finished
Parallel(n_jobs=8)]: Done 150 out of 150 | elapsed: 30.1min finished
最佳答案
以下是一些可能导致此行为的原因
n_job
都会出现以下行为
n_job=1
和 n_job=2
时,每个线程的时间(GridSearchCV 对模型进行全面训练和测试的每个模型评估时间)为 2.9 秒(总体而言时间~2分钟)n_job=3
时,时间为3.4s(总时间1.4分钟)n_job=4
时,时间为3.8s(总时间58秒)n_job=5
时,时间为4.2s(总时间51秒)n_job=6
时,时间为4.2s(总时间~49秒)n_job=7
时,时间为4.2s(总时间~49秒)n_job=8
时,时间为4.2s(总时间~49秒)现在如您所见,每个线程的时间增加了,但总体时间似乎减少了(尽管在 n_job=4 之后,差异并不是完全线性的)并且保持在
n_jobs>=6 ` 这是因为初始化和释放线程会产生成本。参见 this github issue和 this issue .
此外,可能还有其他瓶颈,例如数据太大而无法同时广播到所有线程、线程抢占 RAM(或其他资源等)、如何将数据推送到每个线程线程等
我建议您阅读 Ahmdal 定律,该定律指出通过公式给出的并行化可以实现的加速在理论上存在界限 图片来源:Ahmdal's Law : Wikipedia
最后,这也可能是由于数据大小和您用于训练的模型的复杂性所致。
这里是 a blog post解释有关多线程的相同问题。
关于python - 增加 n_jobs 对 GridSearchCV 没有影响,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50993867/
考虑以下网格搜索: grid = GridSearchCV(clf, parameters, n_jobs =-1, iid=True, cv =5) grid_fit = grid.fit(X_tr
我正在做一个 GridSearchCV,我已经监控了核心的百分比,并且我看到当我运行一个简单的神经网络时,4 个核心具有相同的百分比,但是当网格搜索 cv (n_jobs = 1) 开始时在情节的线条
我在带有 RBF 内核的 SVM 上进行了网格搜索 + 交叉验证,以使用类 GridShearchCV 找到参数 C 和 gamma 的最佳值。现在我想以表格格式获得结果,例如 C/gamma 1e-
我正在尝试为 sklearn 的 GridSearchCV 结果生成热图。我喜欢的东西sklearn-evaluation是因为生成热图真的很容易。但是,我遇到了一个问题。当我将参数设为 None 时
我想提高这个的参数GridSearchCV 对于 随机森林回归器 . def Grid_Search_CV_RFR(X_train, y_train): from sklearn.model_
我正在尝试设置 GridSearchCV 的实例来确定哪一组超参数将产生最低的平均绝对误差。 This scikit documentation表示分数指标可以在创建 GridSearchCV 时传递
当使用网格搜索在 python 中使用此函数 GridSearchCV() 进行分类器时,假设我们有一个参数区间来调整形式 1 到 100,我们如何能够指定它(1:100 不起作用)? p> 最佳答案
我是机器学习的新手,并且一直坚持这个。 当我尝试在线性模型中实现多项式回归时,例如使用多个次数的多项式范围(1,10)并获得不同的 MSE。我实际上使用 GridsearchCV 方法来查找多项式的最
我想在一系列 alpha(拉普拉斯平滑参数)上使用 GridSearchCV 来检查哪个为伯努利朴素贝叶斯模型提供了最佳准确度。 def binarize_pixels(data, threshold
使用 sklearn 在随机森林分类器上运行网格搜索。这个运行的时间比我想象的要长,我正在尝试估计这个过程还剩多少时间。我认为它的总拟合次数是 3*3*3*3*5 = 405。 clf = Rando
我正在尝试使用网格搜索找出要在 PCA 中使用的 n_components 的最佳值: from sklearn.decomposition import PCA from sklearn.grid_
我正在尝试 GridsearchCV 但我希望在 param grid 中有一些异常(exception)。这是我的网格搜索代码: from sklearn.model_selection impor
我很难找出 GridSearchCV 中的参数 return_train_score。来自docs : return_train_score : boolean, optional If
我必须进行多类分类 (3)。我使用 GridSearchCV 为我的分类器搜索最佳参数。 但我有一个不平衡的 x_train(和 x_test):0 有 3079 个实例,1 有 12 个实例,3 有
有没有办法访问在 GridSearchCV 过程中计算的预测值? 我希望能够根据实际值(来自测试/验证集)绘制预测的 y 值。 网格搜索完成后,我可以使用 将其与其他一些数据相匹配 ypred =
我正在使用GridsearchCV来调整超参数,现在我想在训练和验证步骤中进行最小-最大Normalization(StandardScaler())。但我认为我不能做到这一点。 问题是: 如果我对整
我正在使用 scikit learn 进行多标签分类。我使用 RandomForestClassifier 作为基本估计器。我想使用 GridSearchCV 优化每个标签的参数。目前我正在按以下方式
好的,我只想说,我对 SciKit-Learn 和数据科学完全陌生。但这是问题所在,也是我目前对该问题的研究。代码在底部。 总结 我正尝试使用 BernoulliRBM 进行类型识别(例如数字),并尝
我正在使用 GridSearchCV ,并且在每次迭代之后,我想将 clf.cv_results_ 属性保存到一个文件中(以防进程在中间崩溃)。 我尝试寻找解决方案,但就是想不通。 我们将不胜感激。
我正在尝试自学如何在基本的多层神经网络中对神经元的数量进行网格搜索。我正在使用 Python 的 GridSearchCV 和 KerasClasifier 以及 Keras。下面的代码适用于其他数据
我是一名优秀的程序员,十分优秀!