- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试在 Python 中重现以下 R 结果。在这种特殊情况下,R 预测技能低于 Python 技能,但根据我的经验通常情况并非如此(因此我想在 Python 中重现结果),因此请忽略此处的细节。
目的是预测花的种类('versicolor' 0 或 'virginica' 1)。我们有 100 个标记样本,每个样本包含 4 个花特征:萼片长度、萼片宽度、花瓣长度、花瓣宽度。我将数据分成训练集(60% 的数据)和测试集(40% 的数据)。对训练集应用 10 折交叉验证来搜索最优的 lambda(优化的参数是 scikit-learn 中的“C”)。
我正在使用 glmnet在 R 中,alpha 设置为 1(用于 LASSO 惩罚),对于 python,scikit-learn 的 LogisticRegressionCV函数与“liblinear”求解器(唯一可以与 L1 惩罚一起使用的求解器)。交叉验证中使用的评分指标在两种语言之间是相同的。然而,模型结果不知何故不同(每个特征的截距和系数差异很大)。
R 代码
library(glmnet)
library(datasets)
data(iris)
y <- as.numeric(iris[,5])
X <- iris[y!=1, 1:4]
y <- y[y!=1]-2
n_sample = NROW(X)
w = .6
X_train = X[0:(w * n_sample),] # (60, 4)
y_train = y[0:(w * n_sample)] # (60,)
X_test = X[((w * n_sample)+1):n_sample,] # (40, 4)
y_test = y[((w * n_sample)+1):n_sample] # (40,)
# set alpha=1 for LASSO and alpha=0 for ridge regression
# use class for logistic regression
set.seed(0)
model_lambda <- cv.glmnet(as.matrix(X_train), as.factor(y_train),
nfolds = 10, alpha=1, family="binomial", type.measure="class")
best_s <- model_lambda$lambda.1se
pred <- as.numeric(predict(model_lambda, newx=as.matrix(X_test), type="class" , s=best_s))
# best lambda
print(best_s)
# 0.04136537
# fraction correct
print(sum(y_test==pred)/NROW(pred))
# 0.75
# model coefficients
print(coef(model_lambda, s=best_s))
#(Intercept) -14.680479
#Sepal.Length 0
#Sepal.Width 0
#Petal.Length 1.181747
#Petal.Width 4.592025
Python 代码
from sklearn import datasets
from sklearn.linear_model import LogisticRegressionCV
from sklearn.preprocessing import StandardScaler
import numpy as np
iris = datasets.load_iris()
X = iris.data
y = iris.target
X = X[y != 0] # four features. Disregard one of the 3 species.
y = y[y != 0]-1 # two species: 'versicolor' (0), 'virginica' (1). Disregard one of the 3 species.
n_sample = len(X)
w = .6
X_train = X[:int(w * n_sample)] # (60, 4)
y_train = y[:int(w * n_sample)] # (60,)
X_test = X[int(w * n_sample):] # (40, 4)
y_test = y[int(w * n_sample):] # (40,)
X_train_fit = StandardScaler().fit(X_train)
X_train_transformed = X_train_fit.transform(X_train)
clf = LogisticRegressionCV(n_jobs=2, penalty='l1', solver='liblinear', cv=10, scoring = ‘accuracy’, random_state=0)
clf.fit(X_train_transformed, y_train)
print clf.score(X_train_fit.transform(X_test), y_test) # score is 0.775
print clf.intercept_ #-1.83569557
print clf.coef_ # [ 0, 0, 0.65930981, 1.17808155] (sepal length, sepal width, petal length, petal width)
print clf.C_ # optimal lambda: 0.35938137
最佳答案
上面的例子有几点不同:
系数的尺度
LogisticRegressionCV 默认使用 stratifiedfolds。 glmnet 使用 k-fold。
他们正在拟合不同的方程。请注意,scikit-learn 逻辑适合 ( http://scikit-learn.org/stable/modules/linear_model.html#logistic-regression ) 与逻辑方面的正则化。 glmnet 对惩罚进行正则化。
选择要尝试的正则化强度 - glmnet 默认为要尝试的 100 个 lambda。 scikit LogisticRegressionCV 默认为 10。由于 scikit 求解的方程,范围在 1e-4 和 1e4 ( http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html#sklearn.linear_model.LogisticRegressionCV ) 之间。
容忍度不同。在我遇到的一些问题中,收紧公差会显着改变系数。
您可能想尝试打印正则化路径以查看它们是否非常相似,只是停在不同的强度上。然后你可以研究原因。
即使更改了您可以更改的内容(并非以上所有内容),您也可能无法获得相同的系数或结果。尽管您在不同的软件中解决相同的问题,但软件解决问题的方式可能会有所不同。我们看到不同的尺度、不同的方程、不同的默认值、不同的求解器等。
关于python - 使用 Iris 数据集在 Python 中重现 LASSO/Logistic 回归结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43581850/
[在此处输入图像描述][1]我正在努力弄清楚回归是否是我需要走的路线,以便解决我当前使用 Python 的挑战。这是我的场景: 我有一个 195 行 x 25 列的 Pandas Dataframe
我想训练回归模型(不是分类),其输出是连续数字。 假设我有输入变量 X,其范围在 -70 到 70 之间。我有输出变量 Y,其范围在 -5 到 5 之间。X 有 39 个特征,Y 有 16 个特征,每
我想使用神经网络逼近 sinc 函数。这是我的代码: import tensorflow as tf from keras.layers import Dense from keras.models
我对 postgres 表做了一些更改,我想将其恢复到以前的状态。没有数据库的备份。有办法吗?比如,postgres 会自动拍摄快照并将其存储在某个地方,还是原始数据会永远丢失? 最佳答案 默认情况下
我有大约 100 个 7x7 因变量矩阵(所以有 49 个因变量)。我的自变量是时间。我正在做一个物理项目,我应该通过求解 ODE 得到一个矩阵函数(矩阵的每个元素都是时间的函数)。我使用了 nump
我之前曾被告知——出于完全合理的原因——当结果变量为二元变量时(即是/否、真/假、赢/输等),不应运行 OLS 回归。但是,我经常阅读经济学/其他社会科学方面的论文,其中研究人员对二元变量运行 OLS
您好,我正在使用生命线包进行 Cox 回归。我想检查非二元分类变量的影响。有内置的方法吗?或者我应该将每个类别因子转换为一个数字?或者,在生命线中使用 kmf fitter,是否可以对每个因素执行此操
作为后续 this question ,我拟合了具有定量和定性解释变量之间相互作用的多元 Logistic 回归。 MWE如下: Type |z|) (Intercept) -0.65518
我想在单个动物园对象中的多对数据系列上使用 lm 执行滚动回归。 虽然我能够通过以下代码对动物园对象中的一对数据系列执行滚动回归: FunLm seat time(seat) seat fm
是否有一种简单的方法可以在 R 中拟合多元回归,其中因变量根据 Skellam distribution 分布? (两个泊松分布计数之间的差异)?比如: myskellam <- glm(A ~ B
包含各种特征和回归目标(称为 qval)的数据集用于训练 XGBoost 回归器。该值 qval 介于 0 和 1 之间,应具有以下分布: 到目前为止,还不错。但是,当我使用 xgb.save_mod
这有效: felm(y ~ x1 + x2 | fe1 + fe2 | 0 | , data = data) 我想要: fixedeffects = "fe1 + fe2" felm(y ~ x1
这有效: felm(y ~ x1 + x2 | fe1 + fe2 | 0 | , data = data) 我想要: fixedeffects = "fe1 + fe2" felm(y ~ x1
关闭。这个问题不符合Stack Overflow guidelines .它目前不接受答案。 我们不允许提问寻求书籍、工具、软件库等的推荐。您可以编辑问题,以便用事实和引用来回答。 关闭 7 年前。
我刚刚开始使用 R 进行统计分析,而且我还在学习。我在 R 中创建循环时遇到问题。我有以下案例,我想知道是否有人可以帮助我。对我来说,这似乎是不可能的,但对你们中的一些人来说,这只是小菜一碟。我有不同
是否可以在 sklearn 中使用或不使用(即仅使用截距)预测器来运行回归(例如逻辑回归)?这似乎是一个相当标准的类型分析,也许这些信息已经在输出中可用。 我发现的唯一相关的东西是sklearn.sv
假设我对一些倾斜的数据分布执行 DNN 回归任务。现在我使用平均绝对误差作为损失函数。 机器学习中的所有典型方法都是最小化平均损失,但对于倾斜来说这是不恰当的。从实际角度来看,最好尽量减少中值损失。我
我正在对公寓特征进行线性回归分析,然后预测公寓的价格。目前,我已经收集了我所在城市 13000 套公寓的特征。我有 23-25 个特征,我不确定在公寓价格预测中拥有如此多的特征是否正常。 我有以下功能
我是 ML 新手,对 catboost 有疑问。所以,我想预测函数值(例如 cos | sin 等)。我回顾了一切,但我的预测始终是直线 是否可能,如果可能,我该如何解决我的问题 我很高兴收到任何评论
我目前已经为二进制类实现了概率(至少我这么认为)。现在我想扩展这种回归方法,并尝试将其用于波士顿数据集。不幸的是,我的算法似乎被卡住了,我当前运行的代码如下所示: from sklearn impor
我是一名优秀的程序员,十分优秀!