gpt4 book ai didi

python - Pandas - 在多列上有条件地合并数据框

转载 作者:太空狗 更新时间:2023-10-30 00:59:13 25 4
gpt4 key购买 nike

我有 2 个数据框,我想从一列中取出一列,并根据多个(其他)列中的值在第二列中创建一个新列

第一个数据帧(df1):

df1 = pd.DataFrame({'cond': np.repeat([1,2], 5),
'point': np.tile(np.arange(1,6), 2),
'value1': np.random.rand(10),
'unused1': np.random.rand(10)})

cond point unused1 value1
0 1 1 0.923699 0.103046
1 1 2 0.046528 0.188408
2 1 3 0.677052 0.481349
3 1 4 0.464000 0.807454
4 1 5 0.180575 0.962032
5 2 1 0.941624 0.437961
6 2 2 0.489738 0.026166
7 2 3 0.739453 0.109630
8 2 4 0.338997 0.415101
9 2 5 0.310235 0.660748

和第二个(df2):

df2 = pd.DataFrame({'cond': np.repeat([1,2], 10),
'point': np.tile(np.arange(1,6), 4),
'value2': np.random.rand(20)})

cond point value2
0 1 1 0.990252
1 1 2 0.534813
2 1 3 0.407325
3 1 4 0.969288
4 1 5 0.085832
5 1 1 0.922026
6 1 2 0.567615
7 1 3 0.174402
8 1 4 0.469556
9 1 5 0.511182
10 2 1 0.219902
11 2 2 0.761498
12 2 3 0.406981
13 2 4 0.551322
14 2 5 0.727761
15 2 1 0.075048
16 2 2 0.159903
17 2 3 0.726013
18 2 4 0.848213
19 2 5 0.284404

df1['value1'] 包含 condpoint 的每个组合的值。

我想在 df2 中创建一个新列 (new_column),其中包含来自 df1['value1'] 的值,但是这些值应该是 condpoint 在 2 个数据帧中匹配的那些。

所以我想要的输出看起来像这样:

    cond  point    value2  new_column
0 1 1 0.990252 0.103046
1 1 2 0.534813 0.188408
2 1 3 0.407325 0.481349
3 1 4 0.969288 0.807454
4 1 5 0.085832 0.962032
5 1 1 0.922026 0.103046
6 1 2 0.567615 0.188408
7 1 3 0.174402 0.481349
8 1 4 0.469556 0.807454
9 1 5 0.511182 0.962032
10 2 1 0.219902 0.437961
11 2 2 0.761498 0.026166
12 2 3 0.406981 0.109630
13 2 4 0.551322 0.415101
14 2 5 0.727761 0.660748
15 2 1 0.075048 0.437961
16 2 2 0.159903 0.026166
17 2 3 0.726013 0.109630
18 2 4 0.848213 0.415101
19 2 5 0.284404 0.660748

在这个例子中,我可以只使用平铺/重复,但实际上 df1['value1'] 并不能很好地适合另一个数据框。所以我只需要根据匹配 condpoint

来做

我已经尝试合并它们,但是 1) 数字似乎不匹配,并且 2) 我不想从 df1 中引入任何未使用的列:

df1.merge(df2, left_on=['cond', 'point'], right_on=['cond', 'point'])

无需遍历 2 个数据帧即可添加此新列的正确方法是什么?

最佳答案

选项 1
对于纯 pandas 的优雅和速度,我们可以使用 lookup
这将产生与所有其他选项相同的输出,如下所示。

这个概念是将查找数据表示为二维数组,并使用索引查找值。

d1 = df1.set_index(['cond', 'point']).value1.unstack()
df2.assign(new_column=d1.lookup(df2.cond, df2.point))

选项 2
如果值以与 df1 中相同的方式呈现,我们可以对 numpy 做同样的事情来提高性能。这非常快!

a = df1.value1.values.reshape(2, -1)
df2.assign(new_column=a[df2.cond.values - 1, df2.point.values - 1])

选项 3
规范的答案是使用 merge with the left parameter
但是我们需要准备一些 df1 来确定输出

d1 = df1[['cond', 'point', 'value1']].rename(columns={'value1': 'new_column'})
df2.merge(d1, 'left')

选项 4
我觉得这很有趣。构建一个映射字典和一系列映射
适合小数据,不适合大数据。请参阅下面的时间安排。

c1 = df1.cond.values.tolist()
p1 = df1.point.values.tolist()
v1 = df1.value1.values.tolist()
m = {(c, p): v for c, p, v in zip(c1, p1, v1)}

c2 = df2.cond.values.tolist()
p2 = df2.point.values.tolist()
i2 = df2.index.values.tolist()
s2 = pd.Series({i: (c, p) for i, c, p in zip(i2, c2, p2)})

df2.assign(new_column=s2.map(m))

输出

    cond  point    value2  new_column
0 1 1 0.990252 0.103046
1 1 2 0.534813 0.188408
2 1 3 0.407325 0.481349
3 1 4 0.969288 0.807454
4 1 5 0.085832 0.962032
5 1 1 0.922026 0.103046
6 1 2 0.567615 0.188408
7 1 3 0.174402 0.481349
8 1 4 0.469556 0.807454
9 1 5 0.511182 0.962032
10 2 1 0.219902 0.437961
11 2 2 0.761498 0.026166
12 2 3 0.406981 0.109630
13 2 4 0.551322 0.415101
14 2 5 0.727761 0.660748
15 2 1 0.075048 0.437961
16 2 2 0.159903 0.026166
17 2 3 0.726013 0.109630
18 2 4 0.848213 0.415101
19 2 5 0.284404 0.660748

时机
小数据

%%timeit 
a = df1.value1.values.reshape(2, -1)
df2.assign(new_column=a[df2.cond.values - 1, df2.point.values - 1])
1000 loops, best of 3: 304 µs per loop

%%timeit
d1 = df1.set_index(['cond', 'point']).value1.unstack()
df2.assign(new_column=d1.lookup(df2.cond, df2.point))
100 loops, best of 3: 1.8 ms per loop

%%timeit
c1 = df1.cond.values.tolist()
p1 = df1.point.values.tolist()
v1 = df1.value1.values.tolist()
m = {(c, p): v for c, p, v in zip(c1, p1, v1)}

c2 = df2.cond.values.tolist()
p2 = df2.point.values.tolist()
i2 = df2.index.values.tolist()
s2 = pd.Series({i: (c, p) for i, c, p in zip(i2, c2, p2)})

df2.assign(new_column=s2.map(m))
1000 loops, best of 3: 719 µs per loop

%%timeit
d1 = df1[['cond', 'point', 'value1']].rename(columns={'value1': 'new_column'})
df2.merge(d1, 'left')
100 loops, best of 3: 2.04 ms per loop

%%timeit
df = pd.merge(df2, df1.drop('unused1', axis=1), 'left')
df.rename(columns={'value1': 'new_column'})
100 loops, best of 3: 2.01 ms per loop

%%timeit
df = df2.join(df1.drop('unused1', axis=1).set_index(['cond', 'point']), on=['cond', 'point'])
df.rename(columns={'value1': 'new_column'})
100 loops, best of 3: 2.15 ms per loop

大数据

df2 = pd.concat([df2] * 10000, ignore_index=True)

%%timeit
a = df1.value1.values.reshape(2, -1)
df2.assign(new_column=a[df2.cond.values - 1, df2.point.values - 1])
1000 loops, best of 3: 1.93 ms per loop

%%timeit
d1 = df1.set_index(['cond', 'point']).value1.unstack()
df2.assign(new_column=d1.lookup(df2.cond, df2.point))
100 loops, best of 3: 5.58 ms per loop

%%timeit
c1 = df1.cond.values.tolist()
p1 = df1.point.values.tolist()
v1 = df1.value1.values.tolist()
m = {(c, p): v for c, p, v in zip(c1, p1, v1)}

c2 = df2.cond.values.tolist()
p2 = df2.point.values.tolist()
i2 = df2.index.values.tolist()
s2 = pd.Series({i: (c, p) for i, c, p in zip(i2, c2, p2)})

df2.assign(new_column=s2.map(m))
10 loops, best of 3: 135 ms per loop

%%timeit
d1 = df1[['cond', 'point', 'value1']].rename(columns={'value1': 'new_column'})
df2.merge(d1, 'left')
100 loops, best of 3: 13.4 ms per loop

%%timeit
df = pd.merge(df2, df1.drop('unused1', axis=1), 'left')
df.rename(columns={'value1': 'new_column'})
10 loops, best of 3: 19.8 ms per loop

%%timeit
df = df2.join(df1.drop('unused1', axis=1).set_index(['cond', 'point']), on=['cond', 'point'])
df.rename(columns={'value1': 'new_column'})
100 loops, best of 3: 18.2 ms per loop

关于python - Pandas - 在多列上有条件地合并数据框,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43828226/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com