- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个很大的 csv,每行有两个字符串,格式如下:
g,k
a,h
c,i
j,e
d,i
i,h
b,b
d,d
i,a
d,h
我阅读了前两列并将字符串重新编码为整数,如下所示:
import pandas as pd
df = pd.read_csv("test.csv", usecols=[0,1], prefix="ID_", header=None)
from sklearn.preprocessing import LabelEncoder
# Initialize the LabelEncoder.
le = LabelEncoder()
le.fit(df.values.flat)
# Convert to digits.
df = df.apply(le.transform)
此代码来自https://stackoverflow.com/a/39419342/2179021 .
该代码工作得很好,但当 df 很大时速度很慢。我为每个步骤计时,结果令我惊讶。
pd.read_csv
大约需要 40 秒。 le.fit(df.values.flat)
大约需要 30 秒df = df.apply(le.transform)
大约需要 250 秒。有什么方法可以加快这最后一步吗?感觉应该是最快的一步了!
在具有 4GB RAM 的计算机上重新编码步骤的更多计时
maxymoo 下面的答案很快,但没有给出正确答案。以问题顶部的示例 csv 为例,它将其转换为:
0 1
0 4 6
1 0 4
2 2 5
3 6 3
4 3 5
5 5 4
6 1 1
7 3 2
8 5 0
9 3 4
请注意,“d”在第一列中映射到 3,而在第二列中映射到 2。
我尝试了 https://stackoverflow.com/a/39356398/2179021 中的解决方案并获得以下信息。
df = pd.DataFrame({'ID_0':np.random.randint(0,1000,1000000), 'ID_1':np.random.randint(0,1000,1000000)}).astype(str)
df.info()
memory usage: 7.6MB
%timeit x = (df.stack().astype('category').cat.rename_categories(np.arange(len(df.stack().unique()))).unstack())
1 loops, best of 3: 1.7 s per loop
然后我将数据帧大小增加了 10 倍。
df = pd.DataFrame({'ID_0':np.random.randint(0,1000,10000000), 'ID_1':np.random.randint(0,1000,10000000)}).astype(str)
df.info()
memory usage: 76.3+ MB
%timeit x = (df.stack().astype('category').cat.rename_categories(np.arange(len(df.stack().unique()))).unstack())
MemoryError Traceback (most recent call last)
此方法似乎使用了太多 RAM 来尝试转换它崩溃的这个相对较小的数据帧。
我还使用具有 1000 万行的较大数据集对 LabelEncoder 进行计时。它运行时没有崩溃,但仅拟合线就花了 50 秒。 df.apply(le.transform) 步骤耗时约 80 秒。
我怎样才能:
最佳答案
看起来使用 pandas category
数据类型会快得多;在内部,它使用哈希表,而 LabelEncoder 使用排序搜索:
In [87]: df = pd.DataFrame({'ID_0':np.random.randint(0,1000,1000000),
'ID_1':np.random.randint(0,1000,1000000)}).astype(str)
In [88]: le.fit(df.values.flat)
%time x = df.apply(le.transform)
CPU times: user 6.28 s, sys: 48.9 ms, total: 6.33 s
Wall time: 6.37 s
In [89]: %time x = df.apply(lambda x: x.astype('category').cat.codes)
CPU times: user 301 ms, sys: 28.6 ms, total: 330 ms
Wall time: 331 ms
编辑:这是一个您可以使用的自定义转换器类(您可能不会在官方 scikit-learn 版本中看到它,因为维护者不希望将 pandas 作为依赖)
import pandas as pd
from pandas.core.nanops import unique1d
from sklearn.base import BaseEstimator, TransformerMixin
class PandasLabelEncoder(BaseEstimator, TransformerMixin):
def fit(self, y):
self.classes_ = unique1d(y)
return self
def transform(self, y):
s = pd.Series(y).astype('category', categories=self.classes_)
return s.cat.codes
关于python - 如何加速 LabelEncoder 将分类变量重新编码为整数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39475187/
我想在我的 iPhone 应用程序中加入线性回归。经过一些搜索,我发现 Accelerate Framework 中的 LAPACK 和 BLAS 是正确的库。但是我很难将加速框架添加到我的 XCod
有什么方法可以加速 JS 脚本(我指的是一些复杂的 DOM 操作,比如游戏或动画)? 最佳答案 真的没有办法真正加快速度。您可以压缩它,但不会快很多。 关于Javascript 加速?,我们在Stac
有时,我必须为一个项目重新导入数据,从而将大约 360 万行读入 MySQL 表(目前是 InnoDB,但我实际上并不局限于这个引擎)。 “加载数据文件...”已被证明是最快的解决方案,但它有一个权衡
在尝试计算加速时,我被卡住了。所以给出的问题是: 问题 1 如果程序的 50% 增强了 2 倍,其余 50% 增强了 4 倍,那么由于增强而导致的整体加速是多少? Hints:考虑增强前(未增强)机器
目前我正在处理实时绘图,但可视化非常慢。我想知道你可以做些什么来加速 Matplotlib 中的事情: 后端如何影响性能?是否有后端 实时绘图比其他人更好吗? 我可以降低分辨率以提高 FPS 吗? 如
我有一个小型测试框架。它执行一个循环,执行以下操作: 生成一个小的 Haskell 源文件。 使用 runhaskell 执行此操作.该程序生成各种磁盘文件。 处理刚刚生成的磁盘文件。 这种情况发生了
这是我的网站:Instant-YouTube 如您所见,加载需要很长时间。在 IE8 及以下甚至有时会导致浏览器崩溃。我不确定是什么原因造成的。可能是 Clicksor 广告,但我认为是 swfobj
是否可以加速 SKSpriteNode? 我知道可以使用 node.physicsBody.velocity 轻松设置速度但是设置它的加速度有多难? 最佳答案 从牛顿第二定律倒推运动:F = m.a您
有没有人有加速 FCKEditor 的技术?是否有一些关键的 JavaScript 文件可以缩小或删除? 最佳答案 在最新版本 (3.0.1) 中,FCKEditor 已重命名为 CKEditor .
我有以下 MySQL 查询,需要一天多的时间才能执行: SELECT SN,NUMBER FROM a WHERE SN IN (SELECT LOWER_SN FROM b WHER
我现在正在开发一款使用加速来玩的游戏。我找到了如何让我的元素移动,但不改变它的“原点”,或者更准确地说,改变加速度计算的原点: 事实上,我的图像是移动的,它的中心是这样定义的: imageView.c
我有一个 mysql 表,其中存储有 4 列的成员消息: message_id(主键,自增) sender_id( key ) receiver_id( key ) 消息内容 我做了很多 SELECT
我在 cuda_computation.cu 中有以下代码 #include #include #include #include void checkCUDAError(const char
我正在使用 BeautifulSoup 在 for 循环中解析数千个网站。这是我的代码片段: def parse_decision(link): t1 = time.time() de
我正在使用 OpenCV 2.4 (C++) 在灰度图像上进行寻线。这涉及一些基本的图像处理步骤,如模糊、阈值、Canny 边缘检测器、梯度滤波器或霍夫变换。我必须在数千张图像上应用寻线算法。 考虑到
当我试图连续生成四次相同的报告时,我刚刚分析了我的报告应用程序。第一个用了 1859 毫秒,而后面的只用了 400 到 600 毫秒。对此的解释是什么?我能以某种方式使用它来使我的应用程序更快吗?报告
当我打开 Storyboard文件时,由于其中包含的 VC 数量,打开它需要 1-2 分钟。加快速度的最佳做法是什么?我们应该将一些 VC 移动到不同的 Storyboard文件中吗?我们是否应该使用
我有一个包含多个页面的 UIPageViewController。每个页面都是相同的 View Controller ,但会跟踪页码并显示 PDF 的正确页面。问题是每个 PDF 页面都需要在 cur
这实际上是两个问题,但它们非常相似,为了简单起见,我想将它们放在一起: 首先:给定一个已建立的 Java 项目,除了简单的代码内优化之外,还有哪些不错的方法可以加快它的速度? 其次:在用Java从头写
我有一个包含 1000 个条目的文档,其格式类似于:
我是一名优秀的程序员,十分优秀!