gpt4 book ai didi

python - 用户警告 : Discrepancy between trainable weights and collected trainable weights error

转载 作者:太空狗 更新时间:2023-10-30 00:53:12 33 4
gpt4 key购买 nike

您好,我正在为我自己的数据集训练 VGG16 网络。下面给出了我使用的代码。

from keras.models import Sequential
from scipy.misc import imread
#get_ipython().magic('matplotlib inline')
import matplotlib.pyplot as plt
import numpy as np
import keras
from keras.layers import Dense
import pandas as pd

from keras.applications.vgg16 import VGG16
from keras.preprocessing import image
from keras.applications.vgg16 import preprocess_input
import numpy as np
from keras.applications.vgg16 import decode_predictions
from keras.utils.np_utils import to_categorical

from sklearn.preprocessing import LabelEncoder
from keras.models import Sequential
from keras.optimizers import SGD
from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, Dropout, Flatten, merge, Reshape, Activation
import os
from sklearn.metrics import log_loss
import cv2
from keras.models import Model
from sklearn import cross_validation
from imagenet_utils import preprocess_input
from imagenet_utils import preprocess_input,decode_predictions
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from skimage import measure, morphology
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from os import walk
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import confusion_matrix

os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
def load_images():



def train_test_separation():


df = pd.read_csv('C:/CT_SCAN_IMAGE_SET/resnet_50/dbs2017/data/stage1_labels.csv')
print(df.head())

#print (filenames,' ',pathname,' ',BASE_PATH )
#images=load_images()
labeling = df['cancer'].as_matrix()

names=['Not_Cancer','Cancer']

Y_category=keras.utils.to_categorical(labeling, num_classes=2)
x = np.array([np.mean(np.load('E:/224x224/%s.npy' % str(id)), axis=0) for id in df['id'].tolist()])

print ('.......................................',Y_category.shape)

img_rows, img_cols = 224, 224 # Resolution of inputs
channel = 3
num_classes = 2
batch_size = 50
nb_epoch = 1

# Load Cifar10 data. Please implement your own load_data() module for your own dataset
X_train, Y_train, X_valid, Y_valid = cross_validation.train_test_split(x, Y_category, random_state=42, test_size=0.20)

print (X_train.shape) #(1107, 3, 224, 224)
print (Y_train.shape) #(277, 3, 224, 224)
print (X_valid.shape) #(1107, 2)
print (Y_valid.shape) #(277, 2)

X_train = X_train.transpose(0,2,3,1)
Y_train = Y_train.transpose(0,2,3,1)
print (X_train.shape) # (1107, 224, 224, 3)
# Load our model


# Load our model
model = vgg16_model(img_rows, img_cols, channel, num_classes)
print ('.........................................',Y_valid.shape) #(277, 2)
model.summary()
# Start Fine-tuning and training

#config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True)
#config.gpu_options.allow_growth=True
#config.gpu_options.per_process_gpu_memory_fraction = 0.95
#set_session(tf.Session(config=config))


hist=model.fit(X_train, X_valid,batch_size=batch_size,epochs=nb_epoch,shuffle=True,verbose=1,validation_data=(Y_train, Y_valid))

#validation_data: tuple (x_val, y_val) or tuple (x_val, y_val, val_sample_weights) on which to evaluate the loss and any model
#metrics at the end of each epoch. The model will not be trained on this data. This will override validation_split

(loss,accuracy)=model.evaluate(Y_train,Y_valid,batch_size=batch_size,verbose=1)

print ("[INFO] loss={:.4f},accuracy: {:.4f}%".format(loss,accuracy*100))

df = pd.read_csv('C:/CT_SCAN_IMAGE_SET/resnet_50/dbs2017/data/stage1_sample_submission.csv')
df2 = pd.read_csv('C:/CT_SCAN_IMAGE_SET/resnet_50/dbs2017/data/stage1_solution.csv')
x = np.array([np.mean(np.load('E:/224x224/%s.npy' % str(id)), axis=0) for id in df['id'].tolist()])

x = x.transpose(0,2,3,1)
# Make predictions
pred = model.predict(x, batch_size=batch_size, verbose=1) #predict(self, x, batch_size=None, verbose=0, steps=None)

print (pred)


# Cross-entropy loss score
score = log_loss(x, predictions_valid)


def vgg16_model(img_rows, img_cols, channel=1, num_classes=None):
print ('aaaaaaaaaaaaaaaaaa')

image_input=Input(shape=(224,224,3))

model = VGG16(weights='imagenet', include_top=True, input_tensor=image_input)
print ('bbbbbbbbbbbbbbbbbbbbb')
model.summary()

last_layer=model.get_layer('fc2').output # last layer which will be 4096

# Will add one layer over it.
out=Dense(num_classes, activation='softmax',name='output')(last_layer)

custom_vgg_model=Model(image_input,out) #Creating the custom model using the Keras, Modelfunction.

custom_vgg_model.summary()

#Now you can train the model. Before that you need to compile it.

custom_vgg_model.compile(loss='categorical_crossentropy',optimizer='adadelta',metrics=['accuracy'])


#We do not need to train the etire network. Instead we need to train the last layer.
#All the layers except thelast layer will be freezed

for layer in custom_vgg_model.layers[:-1]:
layer.trainable=False

custom_vgg_model.layers[3].trainable


return custom_vgg_model




if __name__ == '__main__':
#calc_features()
train_test_separation()

但在训练期间我看到了一些不寻常的东西。我看到我的数据集没有接受训练。我只更改了 softmax 分类器层并卡住了上面的所有其他层。之后显示我的模型摘要时,我收到了标题中所示的用户警告。

_________________________________________________________________
block5_conv1 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None, 14, 14, 512) 2359808
_________________________________________________________________
block5_pool (MaxPooling2D) (None, 7, 7, 512) 0
_________________________________________________________________
flatten (Flatten) (None, 25088) 0
_________________________________________________________________
fc1 (Dense) (None, 4096) 102764544
_________________________________________________________________
fc2 (Dense) (None, 4096) 16781312
_________________________________________________________________
output (Dense) (None, 2) 8194
=================================================================

Warning (from warnings module):
File "C:\Research\Python_installation\lib\site-packages\keras\engine\training.py", line 973
'Discrepancy between trainable weights and collected trainable'
UserWarning: Discrepancy between trainable weights and collected trainable weights, did you set `model.trainable` without calling `model.compile` after ?
Total params: 268,529,282
Trainable params: 134,268,738
Non-trainable params: 134,260,544
_________________________________________________________________
Train on 1107 samples, validate on 277 samples
Epoch 1/1

50/1107 [>.............................] - ETA: 31:43 - loss: 0.7271 - acc: 0.6800������������������������������������������������������������������������������������
100/1107 [=>............................] - ETA: 28:14 - loss: 5.3602 - acc: 0.5300������������������������������������������������������������������������������������
150/1107 [===>..........................] - ETA: 26:16 - loss: 7.7642 - acc: 0.4267������������������������������������������������������������������������������������
200/1107 [====>.........................] - ETA: 24:44 - loss: 8.8050 - acc: 0.3850������������������������������������������������������������������������������������
250/1107 [=====>........................] - ETA: 23:21 - loss: 9.1716 - acc: 0.3760������������������������������������������������������������������������������������
300/1107 [=======>......................] - ETA: 22:06 - loss: 9.8458 - acc: 0.3433������������������������������������������������������������������������������������
350/1107 [========>.....................] - ETA: 20:37 - loss: 10.2353 - acc: 0.3257�������������������������������������������������������������������������������������
400/1107 [=========>....................] - ETA: 19:04 - loss: 10.4468 - acc: 0.3175�������������������������������������������������������������������������������������
450/1107 [===========>..................] - ETA: 17:38 - loss: 10.6829 - acc: 0.3067�������������������������������������������������������������������������������������
500/1107 [============>.................] - ETA: 16:12 - loss: 10.7429 - acc: 0.3060������������������������������������������

如果模型工作正常,那么

Non-trainable params: 134,260,544

计数不应为 134,260,544,而应为 8194。但我得到的是 134,260,544 而不是 8194,并带有用户警告。

显示时,我的验证数据集的预测输出如下所示。

[[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]
[0. 1.]

这意味着数据集根本没有正确分类。

谁能帮我找出我犯的错误。

我收到的用户警告

Warning (from warnings module):
File "C:\Research\Python_installation\lib\site-packages\keras\engine\training.py", line 973
'Discrepancy between trainable weights and collected trainable'
UserWarning: Discrepancy between trainable weights and collected trainable weights, did you set `model.trainable` without calling `model.compile` after ?

enter image description here

最佳答案

错误信息是

did you set model.trainable without calling model.compile after ?

在您的“vgg16_model”中,您首先编译您的模型,然后开始更改包含层的可训练标志。首先,您应该在可训练性更改之后而不是之前编译您的模型,看看这是否会解决您的问题。

关于python - 用户警告 : Discrepancy between trainable weights and collected trainable weights error,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49091553/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com