- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我在这里阅读了所有相关问题,但找不到有效的解决方案:
我的分类器创建:
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
tf = StemmedTfidfVectorizer(analyzer='word', ngram_range=(1,2), min_df = 0, max_features=200000, stop_words = 'english')
def create_tfidf(f):
docs = []
targets = []
with open(f, "r") as sentences_file:
reader = csv.reader(sentences_file, delimiter=';')
reader.next()
for row in reader:
docs.append(row[1])
targets.append(row[0])
tfidf_matrix = tf.fit_transform(docs)
print tfidf_matrix.shape
# print tf.get_feature_names()
return tfidf_matrix, targets
X,y = create_tfidf("l0.csv")
clf = LinearSVC().fit(X,y)
_ = joblib.dump(clf, 'linearL0_3gram_100K.pkl', compress=9)
这个位有效,并生成 .pkl,然后我尝试在不同的脚本中使用它:
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
tf = StemmedTfidfVectorizer(analyzer='word', ngram_range=(1,2), min_df = 0, max_features=200000, stop_words = 'english')
clf = joblib.load('linearL0_3gram_100K.pkl')
print clf
test = "My super elaborate test string to test predictions"
print test + clf.predict(tf.transform([test]))[0]
我得到 ValueError: Vocabulary wasn't fitted or is empty!
根据要求编辑:错误回溯
File "classifier.py", line 27, in <module>
print test + clf.predict(tf.transform([test]))[0]
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/feature_extraction/text.py", line 1313, in transform
X = super(TfidfVectorizer, self).transform(raw_documents)
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/feature_extraction/text.py", line 850, in transform
self._check_vocabulary()
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/feature_extraction/text.py", line 271, in _check_vocabulary
check_is_fitted(self, 'vocabulary_', msg=msg),
File "/home/ec2-user/.local/lib/python2.7/site-packages/sklearn/utils/validation.py", line 627, in check_is_fitted
raise NotFittedError(msg % {'name': type(estimator).__name__})
sklearn.utils.validation.NotFittedError: StemmedTfidfVectorizer - Vocabulary wasn't fitted.
最佳答案
好的,我通过使用管道将我的矢量化器保存在 .plk 中解决了这个问题
这是它的样子(也更简单):
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib
from sklearn.pipeline import Pipeline
import Stemmer
import pickle
english_stemmer = Stemmer.Stemmer('en')
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
def create_tfidf(f):
docs = []
targets = []
with open(f, "r") as sentences_file:
reader = csv.reader(sentences_file, delimiter=';')
reader.next()
for row in reader:
docs.append(row[1])
targets.append(row[0])
return docs, targets
docs,y = create_tfidf("l1.csv")
tf = StemmedTfidfVectorizer(analyzer='word', ngram_range=(1,2), min_df = 0, max_features=200000, stop_words = 'english')
clf = LinearSVC()
vec_clf = Pipeline([('tfvec', tf), ('svm', clf)])
vec_clf.fit(docs,y)
_ = joblib.dump(vec_clf, 'linearL0_3gram_100K.pkl', compress=9)
另一方面:
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.externals import joblib
import Stemmer
import pickle
english_stemmer = Stemmer.Stemmer('en')
class StemmedTfidfVectorizer(TfidfVectorizer):
def build_analyzer(self):
analyzer = super(TfidfVectorizer, self).build_analyzer()
return lambda doc: english_stemmer.stemWords(analyzer(doc))
clf = joblib.load('linearL0_3gram_100K.pkl')
test = ["My super elaborate test string to test predictions"]
print test + clf.predict(test)[0]
重要事项:
transformer 和 tf 一样是管道的一部分,因此不需要重新声明一个新的矢量化器(这是之前的失败点,因为它需要训练数据中的词汇表),或者 .transform()测试字符串。
关于python - 加载 pickled 分类器数据 : Vocabulary not fitted Error,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31744519/
我之前让 dll 注入(inject)器变得简单,但我有 Windows 7,我用 C# 和 C++ 做了它,它工作得很好!但是现在当我在 Windows 8 中尝试相同的代码时,它似乎没有以正确的方
我正在尝试制作一个名为 core-splitter 的元素,该元素在 1.0 中已弃用,因为它在我们的项目中起着关键作用。 如果您不知道 core-splitter 的作用,我可以提供一个简短的描述。
我有几个不同的蜘蛛,想一次运行所有它们。基于 this和 this ,我可以在同一个进程中运行多个蜘蛛。但是,我不知道如何设计一个信号系统来在所有蜘蛛都完成后停止 react 器。 我试过了: cra
有没有办法在达到特定条件时停止扭曲 react 器。例如,如果一个变量被设置为某个值,那么 react 器应该停止吗? 最佳答案 理想情况下,您不会将变量设置为一个值并停止 react 器,而是调用
https://code.angularjs.org/1.0.0rc9/angular-1.0.0rc9.js 上面的链接定义了外部js文件,我不知道Angular-1.0.0rc9.js的注入(in
我正在尝试运行一个函数并将服务注入(inject)其中。我认为这可以使用 $injector 轻松完成.所以我尝试了以下(简化示例): angular.injector().invoke( [ "$q
在 google Guice 中,我可以使用函数 createInjector 创建基于多个模块的注入(inject)器。 因为我使用 GWT.create 在 GoogleGin 中实例化注入(in
我在 ASP.NET Core 1.1 解决方案中使用配置绑定(bind)。基本上,我在“ConfigureServices Startup”部分中有一些用于绑定(bind)的简单代码,如下所示: s
我在 Spring MVC 中设置 initBinder 时遇到一些问题。我有一个 ModelAttribute,它有一个有时会显示的字段。 public class Model { privat
我正在尝试通过jquery post发布knockoutjs View 模型 var $form = $('#barcodeTemplate form'); var data = ko.toJS(vm
如何为包含多态对象集合的复杂模型编写自定义模型绑定(bind)程序? 我有下一个模型结构: public class CustomAttributeValueViewModel { publi
您好,我正在尝试实现我在 this article 中找到的扩展方法对于简单的注入(inject)器,因为它不支持开箱即用的特定构造函数的注册。 根据这篇文章,我需要用一个假的委托(delegate)
你好,我想自动注册我的依赖项。 我现在拥有的是: public interface IRepository where T : class public interface IFolderReposi
我正在使用 Jasmine 测试一些 Angular.js 代码。为此,我需要一个 Angular 注入(inject)器: var injector = angular.injector(['ng'
我正在使用 Matlab 代码生成器。不可能包含代码风格指南。这就是为什么我正在寻找一个工具来“ reshape ”、重命名和重新格式化生成的代码,根据我的: 功能横幅约定 文件横幅约定 命名约定 等
这个问题在这里已经有了答案: Where and why do I have to put the "template" and "typename" keywords? (8 个答案) 关闭 8
我开发了一种工具,可以更改某些程序的外观。为此,我需要在某些进程中注入(inject)一个 dll。 现在我基本上使用这个 approach .问题通常是人们无法注入(inject) dll,因为他们
我想使用 swing、spring 和 hibernate 编写一个 java 应用程序。 我想使用数据绑定(bind)器用 bean 的值填充 gui,并且我还希望它反射(reflect) gui
我有这段代码,当两个蜘蛛完成后,程序仍在运行。 #!C:\Python27\python.exe from twisted.internet import reactor from scrapy.cr
要点是 Spring Batch (v2) 测试框架具有带有 @Autowired 注释的 JobLauncherTestUtils.setJob。我们的测试套件有多个 Job 类提供者。因为这个类不
我是一名优秀的程序员,十分优秀!