- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我用 Google 的 TensorFlow 构建了一个 MLP图书馆。网络正在工作,但不知何故它拒绝正常学习。无论实际输入是什么,它总是收敛到接近 1.0 的输出。
完整代码可见here .
有什么想法吗?
输入和输出(批量大小为 4)如下:
input_data = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]] # XOR input
output_data = [[0.], [1.], [1.], [0.]] # XOR output
n_input = tf.placeholder(tf.float32, shape=[None, 2], name="n_input")
n_output = tf.placeholder(tf.float32, shape=[None, 1], name="n_output")
隐藏层配置:
# hidden layer's bias neuron
b_hidden = tf.Variable(0.1, name="hidden_bias")
# hidden layer's weight matrix initialized with a uniform distribution
W_hidden = tf.Variable(tf.random_uniform([2, hidden_nodes], -1.0, 1.0), name="hidden_weights")
# calc hidden layer's activation
hidden = tf.sigmoid(tf.matmul(n_input, W_hidden) + b_hidden)
输出层配置:
W_output = tf.Variable(tf.random_uniform([hidden_nodes, 1], -1.0, 1.0), name="output_weights") # output layer's weight matrix
output = tf.sigmoid(tf.matmul(hidden, W_output)) # calc output layer's activation
我的学习方法是这样的:
loss = tf.reduce_mean(cross_entropy) # mean the cross_entropy
optimizer = tf.train.GradientDescentOptimizer(0.01) # take a gradient descent for optimizing
train = optimizer.minimize(loss) # let the optimizer train
我为交叉熵尝试了两种设置:
cross_entropy = -tf.reduce_sum(n_output * tf.log(output))
和
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(n_output, output)
其中 n_output
是 output_data
中描述的原始输出,output
是我的网络的预测/计算值。
for 循环内的训练(n 个时期)是这样的:
cvalues = sess.run([train, loss, W_hidden, b_hidden, W_output],
feed_dict={n_input: input_data, n_output: output_data})
我正在将结果保存到 cvalues 以调试 loss
, W_hidden
, ...
无论我尝试过什么,当我测试我的网络并尝试验证输出时,它总是会产生如下内容:
(...)
step: 2000
loss: 0.0137040186673
b_hidden: 1.3272010088
W_hidden: [[ 0.23195425 0.53248233 -0.21644847 -0.54775208 0.52298909]
[ 0.73933059 0.51440752 -0.08397482 -0.62724304 -0.53347367]]
W_output: [[ 1.65939867]
[ 0.78912479]
[ 1.4831928 ]
[ 1.28612828]
[ 1.12486529]]
(--- finished with 2000 epochs ---)
(Test input for validation:)
input: [0.0, 0.0] | output: [[ 0.99339396]]
input: [0.0, 1.0] | output: [[ 0.99289012]]
input: [1.0, 0.0] | output: [[ 0.99346077]]
input: [1.0, 1.0] | output: [[ 0.99261558]]
所以它没有正确地学习,但无论输入哪个输入,它总是收敛到接近 1.0。
最佳答案
与此同时,在一位同事的帮助下,我能够修复我的解决方案并希望将其发布以确保完整性。我的解决方案使用交叉熵并且不改变训练数据。此外,它具有所需的输入形状 (1, 2) 和输出是标量。
它利用 AdamOptimizer
比 GradientDescentOptimizer
更快地减少错误。参见 this post有关优化器的更多信息(和问题^^)。
事实上,我的网络仅用 400-800 个学习步骤就产生了相当不错的结果。
经过 2000 个学习步骤后,输出接近“完美”:
step: 2000
loss: 0.00103311243281
input: [0.0, 0.0] | output: [[ 0.00019799]]
input: [0.0, 1.0] | output: [[ 0.99979786]]
input: [1.0, 0.0] | output: [[ 0.99996307]]
input: [1.0, 1.0] | output: [[ 0.00033751]]
import tensorflow as tf
#####################
# preparation stuff #
#####################
# define input and output data
input_data = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]] # XOR input
output_data = [[0.], [1.], [1.], [0.]] # XOR output
# create a placeholder for the input
# None indicates a variable batch size for the input
# one input's dimension is [1, 2] and output's [1, 1]
n_input = tf.placeholder(tf.float32, shape=[None, 2], name="n_input")
n_output = tf.placeholder(tf.float32, shape=[None, 1], name="n_output")
# number of neurons in the hidden layer
hidden_nodes = 5
################
# hidden layer #
################
# hidden layer's bias neuron
b_hidden = tf.Variable(tf.random_normal([hidden_nodes]), name="hidden_bias")
# hidden layer's weight matrix initialized with a uniform distribution
W_hidden = tf.Variable(tf.random_normal([2, hidden_nodes]), name="hidden_weights")
# calc hidden layer's activation
hidden = tf.sigmoid(tf.matmul(n_input, W_hidden) + b_hidden)
################
# output layer #
################
W_output = tf.Variable(tf.random_normal([hidden_nodes, 1]), name="output_weights") # output layer's weight matrix
output = tf.sigmoid(tf.matmul(hidden, W_output)) # calc output layer's activation
############
# learning #
############
cross_entropy = -(n_output * tf.log(output) + (1 - n_output) * tf.log(1 - output))
# cross_entropy = tf.square(n_output - output) # simpler, but also works
loss = tf.reduce_mean(cross_entropy) # mean the cross_entropy
optimizer = tf.train.AdamOptimizer(0.01) # take a gradient descent for optimizing with a "stepsize" of 0.1
train = optimizer.minimize(loss) # let the optimizer train
####################
# initialize graph #
####################
init = tf.initialize_all_variables()
sess = tf.Session() # create the session and therefore the graph
sess.run(init) # initialize all variables
#####################
# train the network #
#####################
for epoch in xrange(0, 2001):
# run the training operation
cvalues = sess.run([train, loss, W_hidden, b_hidden, W_output],
feed_dict={n_input: input_data, n_output: output_data})
# print some debug stuff
if epoch % 200 == 0:
print("")
print("step: {:>3}".format(epoch))
print("loss: {}".format(cvalues[1]))
# print("b_hidden: {}".format(cvalues[3]))
# print("W_hidden: {}".format(cvalues[2]))
# print("W_output: {}".format(cvalues[4]))
print("")
print("input: {} | output: {}".format(input_data[0], sess.run(output, feed_dict={n_input: [input_data[0]]})))
print("input: {} | output: {}".format(input_data[1], sess.run(output, feed_dict={n_input: [input_data[1]]})))
print("input: {} | output: {}".format(input_data[2], sess.run(output, feed_dict={n_input: [input_data[2]]})))
print("input: {} | output: {}".format(input_data[3], sess.run(output, feed_dict={n_input: [input_data[3]]})))
关于python - TensorFlow MLP 不训练 XOR,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33997823/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!