- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
在 Jupyter 笔记本中使用 TensorFlow 时,我似乎无法恢复保存的变量。我训练一个 ANN,然后我运行 saver.save(sess, "params1.ckpt")
然后我再次训练它,保存新结果 saver.save(sess, "params2.ckpt"")
但当我运行 saver.restore(sess, "params1.ckpt")
时,我的模型不会加载保存在 params1.ckpt
上的值,并且将它们保存在 params2.ckpt
中。
如果我运行模型,将其保存在 params.ckpt
上,然后关闭并暂停,然后再次尝试加载它,我会收到以下错误:
---------------------------------------------------------------------------
StatusNotOK Traceback (most recent call last)
StatusNotOK: Not found: Tensor name "Variable/Adam" not found in checkpoint files params.ckpt
[[Node: save/restore_slice_1 = RestoreSlice[dt=DT_FLOAT, preferred_shard=-1, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_save/Const_0, save/restore_slice_1/tensor_name, save/restore_slice_1/shape_and_slice)]]
During handling of the above exception, another exception occurred:
SystemError Traceback (most recent call last)
<ipython-input-6-39ae6b7641bd> in <module>()
----> 1 saver.restore(sess, "params.ckpt")
/usr/local/lib/python3.5/site-packages/tensorflow/python/training/saver.py in restore(self, sess, save_path)
889 save_path: Path where parameters were previously saved.
890 """
--> 891 sess.run([self._restore_op_name], {self._filename_tensor_name: save_path})
892
893
/usr/local/lib/python3.5/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict)
366
367 # Run request and get response.
--> 368 results = self._do_run(target_list, unique_fetch_targets, feed_dict_string)
369
370 # User may have fetched the same tensor multiple times, but we
/usr/local/lib/python3.5/site-packages/tensorflow/python/client/session.py in _do_run(self, target_list, fetch_list, feed_dict)
426
427 return tf_session.TF_Run(self._session, feed_dict, fetch_list,
--> 428 target_list)
429
430 except tf_session.StatusNotOK as e:
SystemError: <built-in function delete_Status> returned a result with an error set
我的训练代码是:
def weight_variable(shape, name):
initial = tf.truncated_normal(shape, stddev=1.0, name=name)
return tf.Variable(initial)
def bias_variable(shape, name):
initial = tf.constant(1.0, shape=shape)
return tf.Variable(initial, name=name)
input_file = pd.read_csv('P2R0PC0.csv')
features = #vector with 5 feature names
targets = #vector with 4 feature names
x_data = input_file.as_matrix(features)
t_data = input_file.as_matrix(targets)
x = tf.placeholder(tf.float32, [None, x_data.shape[1]])
hiddenDim = 5
b1 = bias_variable([hiddenDim], name = "b1")
W1 = weight_variable([x_data.shape[1], hiddenDim], name = "W1")
b2 = bias_variable([t_data.shape[1]], name = "b2")
W2 = weight_variable([hiddenDim, t_data.shape[1]], name = "W2")
hidden = tf.nn.sigmoid(tf.matmul(x, W1) + b1)
y = tf.nn.sigmoid(tf.matmul(hidden, W2) + b2)
t = tf.placeholder(tf.float32, [None, t_data.shape[1]])
lambda1 = 1
beta1 = 1
lambda2 = 1
beta2 = 1
error = -tf.reduce_sum(t * tf.log(tf.clip_by_value(y,1e-10,1.0)) + (1 - t) * tf.log(tf.clip_by_value(1 - y,1e-10,1.0)))
complexity = lambda1 * tf.nn.l2_loss(W1) + beta1 * tf.nn.l2_loss(b1) + lambda2 * tf.nn.l2_loss(W2) + beta2 * tf.nn.l2_loss(b2)
loss = error + complexity
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
ran = 25001
delta = 250
plot_data = np.zeros(int(ran / delta + 1))
k = 0;
for i in range(ran):
train_step.run({x: data, t: labels}, sess)
if i % delta == 0:
plot_data[k] = loss.eval({x: data, t: labels}, sess)
#plot_training[k] = loss.eval({x: x_test, t: t_test}, sess)
print(str(plot_data[k]))
k = k + 1
plt.plot(np.arange(start=2, stop=int(ran / delta + 1)), plot_data[2:])
saver = tf.train.Saver()
saver.save(sess, "params.ckpt")
error.eval({x:data, t: labels}, session=sess)
我做错了什么吗?为什么我不能恢复我的变量?
最佳答案
看起来您正在使用 Jupyter 来构建您的模型。一个可能的问题,在构建 tf.Saver
时使用默认参数是它将使用变量的(自动生成的)名称作为检查点中的键。由于在 Jupyter 中多次重新执行代码单元很容易,因此您最终可能会在保存的 session 中得到多个变量节点副本。参见 my answer to this question了解可能出错的原因。
有几种可能的解决方案。这是最简单的:
调用tf.reset_default_graph()
在构建模型(和 Saver
)之前。这将确保变量获得您想要的名称,但会使之前创建的图表无效。
使用显式参数 tf.train.Saver()
指定变量的持久名称。对于您的示例,这应该不会太难(尽管对于较大的模型来说它变得笨拙):
saver = tf.train.Saver(var_list={"b1": b1, "W1": W1, "b2": b2, "W2": W2})
创建一个新的 tf.Graph()
并在每次创建模型时将其设为默认值。这在 Jupyter 中可能很棘手,因为它迫使您将所有模型构建代码放在一个单元格中,但它适用于脚本:
with tf.Graph().as_default():
# Model building and training/evaluation code goes here.
关于python - Jupyter 上的 TensorFlow : Can't restore variables,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34727431/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!