- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
有没有办法从gensim 0.11.1版本的Doc2Vec中获取未见文档和已见文档的文档向量?
例如,假设我在 100 万上训练模型 - 我可以得到那 1000 个文档的文档向量?
有没有办法获取未见文档的文档向量
来自同一个词汇?
最佳答案
对于第一个要点,你可以在gensim 0.11.1中完成
from gensim.models import Doc2Vec
from gensim.models.doc2vec import LabeledSentence
documents = []
documents.append( LabeledSentence(words=[u'some', u'words', u'here'], labels=[u'SENT_1']) )
documents.append( LabeledSentence(words=[u'some', u'people', u'words', u'like'], labels=[u'SENT_2']) )
documents.append( LabeledSentence(words=[u'people', u'like', u'words'], labels=[u'SENT_3']) )
model = Doc2Vec(size=10, window=8, min_count=0, workers=4)
model.build_vocab(documents)
model.train(documents)
print(model[u'SENT_3'])
这里的 SENT_3 是一个已知的句子。
对于第二个要点,您不能在 gensim 0.11.1 中执行此操作,您必须将其更新到 0.12.4。这个最新版本具有 infer_vector 函数,可以为未见过的文档生成向量。
documents = []
documents.append( LabeledSentence([u'some', u'words', u'here'], [u'SENT_1']) )
documents.append( LabeledSentence([u'some', u'people', u'words', u'like'], [u'SENT_2']) )
documents.append( LabeledSentence([u'people', u'like', u'words'], [u'SENT_3']) )
model = Doc2Vec(size=10, window=8, min_count=0, workers=4)
model.build_vocab(documents)
model.train(documents)
print(model.docvecs[u'SENT_3']) # generate a vector for a known sentence
print(model.infer_vector([u'people', u'like', u'words'])) # generate a vector for an unseen sentence
关于python - 如何从 gensim 0.11.1 中的 Doc2Vec 获取文档向量?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37763883/
比方说, word2vec.model 是我训练好的 word2vec 模型。当出现词汇外单词( oov_word )时,我计算向量 vec 使用 compute_vec(oov_word) 方法。现
我有一个现有的 gensim Doc2Vec 模型,我正在尝试对训练集以及模型进行迭代更新。 我拿新文件,照常进行预处理: stoplist = nltk.corpus.stopwords.words
使用 gensim.models.LdaMallet 有什么区别和 gensim.models.LdaModel ?我注意到参数并不完全相同,想知道什么时候应该使用一个而不是另一个? 最佳答案 TL;
我训练了一个 gensim.models.doc2vec.Doc2Vec 模型 d2v_model = Doc2Vec(sentences, size=100, window=8, min_count
我在 gensim 中有一个 word2vec 模型,训练了 98892 个文档。对于句子数组中不存在的任何给定句子(即我训练模型的集合),我需要用该句子更新模型,以便下次查询时给出一些结果。我这样做
我对 Gensim 很陌生,我正在尝试使用 word2vec 模型训练我的第一个模型。我看到所有参数都非常简单易懂,但是我不知道如何跟踪模型的损失以查看进度。此外,我希望能够在每个 epoch 之后获
请帮助我理解如何 TaggedDocument 之间的区别和 LabeledSentence的 gensim作品。我的最终目标是使用 Doc2Vec 进行文本分类模型和任何分类器。我正在关注这个 bl
尝试使用以下代码行在 gensim 中加载文件: model = gensim.models.KeyedVectors.load_word2vec_format(r"C:/Users/dan/txt_
我有一组用神经网络训练的嵌入,与 gensim 的 word2vec 无关。 我想使用这些嵌入作为 gensim.Word2vec 中的初始权重。 现在我看到的是,我可以model.load(SOME
我尝试使用 gensim 导入 import gensim 但出现以下错误 ImportError Traceback (most rece
我正在关注 https://radimrehurek.com/gensim/wiki.html#latent-dirichlet-allocation 上的“英语维基百科”gensim 教程 它解释了
我正在使用 24 核虚拟 CPU 和 100G 内存来训练 Doc2Vec 与 Gensim,但无论修改核数,CPU 的使用率始终在 200% 左右。 top htop 上面两张图显示了cpu使用率,
在将文本文档列表转换为语料库字典,然后使用以下方法将其转换为词袋模型之后: dictionary = gensim.corpora.Dictionary(docs) # docs is a list
我已经使用 Gensim 3.8.0 训练了一个 Word2Vec 模型。后来我尝试在 GCP 上使用使用 Gensim 4.0.o 的预训练模型。我使用了以下代码: model = KeyedVec
我正在构建一个多标签文本分类程序,我正在尝试使用 OneVsRestClassifier+XGBClassifier 对文本进行分类。最初,我使用 Sklearn 的 Tf-Idf 矢量化来矢量化文本
我发现关于 word2vec.similarity() 的警告如下: >d:\python\lib\site-packages\gensim\matutils.py:737: FutureWarnin
我正在尝试使用版本为 3.6 的 Python 的 Gensim 库运行程序。 每当我运行该程序时,我都会遇到这些语句: C:\Python36\lib\site-packages\gensim-2.
我有一个通过 Java 中的 Mallet 训练的 LDA 模型。 Mallet LDA 模型生成了三个文件,这使我能够从文件运行模型并推断新文本的主题分布。 现在我想实现一个 Python 工具,它
我正在使用gensim doc2vec。我想知道是否有任何有效的方法来了解doc2vec的词汇量。一种粗略的方法是计算单词总数,但是如果数据量很大(1GB或更多),那么这将不是一种有效的方法。 最佳答
documentation有点不清楚如何将 fasttext 模型保存到磁盘 - 如何在参数中指定路径,我尝试这样做,但失败并出现错误 文档中的示例 >>> from gensim.test.util
我是一名优秀的程序员,十分优秀!