- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个 Excel 文件 (.xlsx),其中包含大约 800 行和 128 列,网格中的数据非常密集。大约有 9500 个单元格,我正在尝试替换使用 Pandas 数据框的单元格值:
xlsx = pandas.ExcelFile(filename)
frame = xlsx.parse(xlsx.sheet_names[0])
media_frame = frame[media_headers] # just get the cols that need replacing
from_filenames = get_from_filenames() # returns ~9500 filenames to replace in DF
to_filenames = get_to_filenames()
media_frame = media_frame.replace(from_filenames, to_filenames)
frame.update(media_frame)
frame.to_excel(filename)
replace()
需要 60 秒。有什么办法可以加快速度吗?这不是庞大的数据或任务,我期待 Pandas 移动得更快。仅供引用,我尝试对 CSV 格式的相同文件进行相同的处理,但节省的时间很少(replace()
大约 50 秒)
最佳答案
策略
创建 pd.Series
表示从文件名到文件名的 map
。stack
我们的 dataframe,map
,然后 unstack
设置
import pandas as pd
import numpy as np
from string import letters
media_frame = pd.DataFrame(
pd.DataFrame(
np.random.choice(list(letters), 9500 * 800 * 3) \
.reshape(3, -1)).sum().values.reshape(9500, -1))
u = np.unique(media_frame.values)
from_filenames = pd.Series(u)
to_filenames = from_filenames.str[1:] + from_filenames.str[0]
m = pd.Series(to_filenames.values, from_filenames.values)
解决方案
media_frame.stack().map(m).unstack()
5 x 5 数据框
100 x 100
9500 x 800
9500 x 800map
使用 series
与 dict
d = dict(zip(from_filenames, to_filenames))
关于python - Pandas 数据帧替换速度慢,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39844967/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!