gpt4 book ai didi

python - 如何使 sklearn.metrics.confusion_matrix() 始终返回 TP、TN、FP、FN?

转载 作者:太空狗 更新时间:2023-10-30 00:47:44 25 4
gpt4 key购买 nike

我正在使用 sklearn.metrics.confusion_matrix(y_actual, y_predict) 来提取 tn、fp、fn、tp,大部分时间它都能完美运行。

from sklearn.metrics import confusion_matrix

y_actual, y_predict = [1,1,1,1], [0,0,0,0]
tn, fp, fn, tp = confusion_matrix(y_actual, y_predict).ravel()
>>> [0 0 4 0] # ok

y_actual, y_predict = [1,1,1,1],[0,1,0,1]
tn, fp, fn, tp = confusion_matrix(y_actual, y_predict).ravel()
>>> [0 0 2 2] # ok

但是,在某些情况下,confusion_matrix() 并不总是返回这些信息,我会得到如下所示的 ValueError。

from sklearn.metrics import confusion_matrix

y_actual, y_predict = [0,0,0,0],[0,0,0,0]
tn, fp, fn, tp = confusion_matrix(y_actual, y_predict).ravel()
>>> [4] # ValueError: not enough values to unpack (expected 4, got 1)

y_actual, y_predict = [1,1,1,1],[1,1,1,1]
tn, fp, fn, tp = confusion_matrix(y_actual, y_predict).ravel()
>>> [4] # ValueError: not enough values to unpack (expected 4, got 1)

我的临时解决方案是编写自己的函数来提取这些信息。有什么方法可以强制 confusion_matrix() 始终返回 tn、fp、fn、tp 输出?

谢谢

最佳答案

此问题与输入矩阵中包含的唯一标签的数量有关。在您的第二个示例 block 中,它(正确地)构建了一个只有一个类的混淆矩阵,分别为 0 或 1。

要强制它输出两个类,即使其中一个类未被预测,请使用 label 属性。

y_actual, y_predict = [0,0,0,0],[0,0,0,0]
tn, fp, fn, tp = confusion_matrix(y_actual, y_predict, labels=[0,1]).ravel()
>> array([[4, 0],
[0, 0]])

关于python - 如何使 sklearn.metrics.confusion_matrix() 始终返回 TP、TN、FP、FN?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46229965/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com