gpt4 book ai didi

python - 用 matplotlib 表示体素

转载 作者:太空狗 更新时间:2023-10-30 00:38:51 32 4
gpt4 key购买 nike

在 Python 中,给定一个包含 0 或 1 的 N_1 x N_2 x N_3 矩阵,我会寻找一种方法将 3D 数据显示为 N_1 x N_2 x N_3 在 1s 位置具有体积像素(体素)的体积。

例如,如果 1 的坐标是 [[1, 1, 1], [4, 1, 2], [3, 4, 1]],则所需的输出将如下所示像这样

似乎 matplotlib 的 mplot3D 模块有可能实现这一点,但我还没有找到这种情节的任何例子。有人知道解决这个问题的简单解决方案吗?

非常感谢您的帮助。

最佳答案

A.使用体素

从 matplotlib 2.1 开始,有一个 Axes3D.voxels可用的功能,几乎可以满足此处的要求。然而,它不是很容易定制成不同的尺寸、位置或颜色。

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
N1 = 10
N2 = 10
N3 = 10
ma = np.random.choice([0,1], size=(N1,N2,N3), p=[0.99, 0.01])

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_aspect('equal')

ax.voxels(ma, edgecolor="k")

plt.show()

enter image description here

要将体素放置在不同的位置,请参阅 How to scale the voxel-dimensions with Matplotlib? .

B.使用 Poly3DCollection

手动创建体素可能会使过程更加透明,并允许对体素的大小、位置和颜色进行任何类型的自定义。另一个优点是,在这里我们创建了一个 Poly3DCollection 而不是多个,使这个解决方案比内置 voxels 更快。​​

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection

def cuboid_data(o, size=(1,1,1)):
X = [[[0, 1, 0], [0, 0, 0], [1, 0, 0], [1, 1, 0]],
[[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]],
[[1, 0, 1], [1, 0, 0], [1, 1, 0], [1, 1, 1]],
[[0, 0, 1], [0, 0, 0], [0, 1, 0], [0, 1, 1]],
[[0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0]],
[[0, 1, 1], [0, 0, 1], [1, 0, 1], [1, 1, 1]]]
X = np.array(X).astype(float)
for i in range(3):
X[:,:,i] *= size[i]
X += np.array(o)
return X

def plotCubeAt(positions,sizes=None,colors=None, **kwargs):
if not isinstance(colors,(list,np.ndarray)): colors=["C0"]*len(positions)
if not isinstance(sizes,(list,np.ndarray)): sizes=[(1,1,1)]*len(positions)
g = []
for p,s,c in zip(positions,sizes,colors):
g.append( cuboid_data(p, size=s) )
return Poly3DCollection(np.concatenate(g),
facecolors=np.repeat(colors,6, axis=0), **kwargs)

N1 = 10
N2 = 10
N3 = 10
ma = np.random.choice([0,1], size=(N1,N2,N3), p=[0.99, 0.01])
x,y,z = np.indices((N1,N2,N3))-.5
positions = np.c_[x[ma==1],y[ma==1],z[ma==1]]
colors= np.random.rand(len(positions),3)

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_aspect('equal')

pc = plotCubeAt(positions, colors=colors,edgecolor="k")
ax.add_collection3d(pc)

ax.set_xlim([0,10])
ax.set_ylim([0,10])
ax.set_zlim([0,10])
#plotMatrix(ax, ma)
#ax.voxels(ma, edgecolor="k")

plt.show()

enter image description here

C.使用 plot_surface

改编来自 this answer 的代码(部分基于 this answer ),可以很容易地将长方体绘制为 surface plots .

然后可以遍历输入数组,并在找到 1 后在与数组索引对应的位置绘制一个长方体。

这里的优点是您可以在表面上获得漂亮的阴影,从而增加 3D 效果。缺点可能是立方体在某些情况下可能不会表现出物理行为,例如它们可能会在某些视角下重叠。

from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import matplotlib.pyplot as plt

def cuboid_data(pos, size=(1,1,1)):
# code taken from
# https://stackoverflow.com/a/35978146/4124317
# suppose axis direction: x: to left; y: to inside; z: to upper
# get the (left, outside, bottom) point
o = [a - b / 2 for a, b in zip(pos, size)]
# get the length, width, and height
l, w, h = size
x = [[o[0], o[0] + l, o[0] + l, o[0], o[0]],
[o[0], o[0] + l, o[0] + l, o[0], o[0]],
[o[0], o[0] + l, o[0] + l, o[0], o[0]],
[o[0], o[0] + l, o[0] + l, o[0], o[0]]]
y = [[o[1], o[1], o[1] + w, o[1] + w, o[1]],
[o[1], o[1], o[1] + w, o[1] + w, o[1]],
[o[1], o[1], o[1], o[1], o[1]],
[o[1] + w, o[1] + w, o[1] + w, o[1] + w, o[1] + w]]
z = [[o[2], o[2], o[2], o[2], o[2]],
[o[2] + h, o[2] + h, o[2] + h, o[2] + h, o[2] + h],
[o[2], o[2], o[2] + h, o[2] + h, o[2]],
[o[2], o[2], o[2] + h, o[2] + h, o[2]]]
return np.array(x), np.array(y), np.array(z)

def plotCubeAt(pos=(0,0,0),ax=None):
# Plotting a cube element at position pos
if ax !=None:
X, Y, Z = cuboid_data( pos )
ax.plot_surface(X, Y, Z, color='b', rstride=1, cstride=1, alpha=1)

def plotMatrix(ax, matrix):
# plot a Matrix
for i in range(matrix.shape[0]):
for j in range(matrix.shape[1]):
for k in range(matrix.shape[2]):
if matrix[i,j,k] == 1:
# to have the
plotCubeAt(pos=(i-0.5,j-0.5,k-0.5), ax=ax)

N1 = 10
N2 = 10
N3 = 10
ma = np.random.choice([0,1], size=(N1,N2,N3), p=[0.99, 0.01])

fig = plt.figure()
ax = fig.gca(projection='3d')
ax.set_aspect('equal')

plotMatrix(ax, ma)

plt.show()

enter image description here

关于python - 用 matplotlib 表示体素,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42611342/

32 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com