gpt4 book ai didi

python - CNN keras中图像的混淆矩阵

转载 作者:太空狗 更新时间:2023-10-30 00:34:09 27 4
gpt4 key购买 nike

我已经使用 keras 训练了我的 CNN 模型(多类分类),现在我想在我的测试图像集上评估该模型。

除了准确度、精确度和召回率之外,还有哪些可能的选项可以用来评估我的模型?我知道如何从自定义脚本中获得精确度和召回率。但是我找不到一种方法来获取我的 12 类图像的混淆矩阵。Scikit-learn 显示一个 way ,但不适用于图像。我正在使用 model.fit_generator ()

有没有办法为我的所有类创建混淆矩阵或找到我的类的分类置信度?我使用的是 Google Colab,但我可以下载模型并在本地运行。

如有任何帮助,我们将不胜感激。

代码:

train_data_path = 'dataset_cfps/train'
validation_data_path = 'dataset_cfps/validation'

#Parametres
img_width, img_height = 224, 224

vggface = VGGFace(model='resnet50', include_top=False, input_shape=(img_width, img_height, 3))

#vgg_model = VGGFace(include_top=False, input_shape=(224, 224, 3))

last_layer = vggface.get_layer('avg_pool').output
x = Flatten(name='flatten')(last_layer)
xx = Dense(256, activation = 'sigmoid')(x)
x1 = BatchNormalization()(xx)
x2 = Dropout(0.3)(x1)
y = Dense(256, activation = 'sigmoid')(x2)
yy = BatchNormalization()(y)
y1 = Dropout(0.6)(yy)
x3 = Dense(12, activation='sigmoid', name='classifier')(y1)

custom_vgg_model = Model(vggface.input, x3)


# Create the model
model = models.Sequential()

# Add the convolutional base model
model.add(custom_vgg_model)

model.summary()
#model = load_model('facenet_resnet_lr3_SGD_sameas1.h5')

def recall(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall

def precision(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision

train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=20,
width_shift_range=0.2,
height_shift_range=0.2,
horizontal_flip=True,
fill_mode='nearest')


validation_datagen = ImageDataGenerator(rescale=1./255)

# Change the batchsize according to your system RAM
train_batchsize = 32
val_batchsize = 32

train_generator = train_datagen.flow_from_directory(
train_data_path,
target_size=(img_width, img_height),
batch_size=train_batchsize,
class_mode='categorical')

validation_generator = validation_datagen.flow_from_directory(
validation_data_path,
target_size=(img_width, img_height),
batch_size=val_batchsize,
class_mode='categorical',
shuffle=True)

# Compile the model
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.SGD(lr=1e-3),
metrics=['acc', recall, precision])
# Train the model
history = model.fit_generator(
train_generator,
steps_per_epoch=train_generator.samples/train_generator.batch_size ,
epochs=100,
validation_data=validation_generator,
validation_steps=validation_generator.samples/validation_generator.batch_size,
verbose=1)

# Save the model
model.save('facenet_resnet_lr3_SGD_new_FC.h5')

最佳答案

以下是获取所有类的混淆矩阵(或者可能是使用 scikit-learn 的统计数据)的方法:

1.预测类

test_generator = ImageDataGenerator()
test_data_generator = test_generator.flow_from_directory(
test_data_path, # Put your path here
target_size=(img_width, img_height),
batch_size=32,
shuffle=False)
test_steps_per_epoch = numpy.math.ceil(test_data_generator.samples / test_data_generator.batch_size)

predictions = model.predict_generator(test_data_generator, steps=test_steps_per_epoch)
# Get most likely class
predicted_classes = numpy.argmax(predictions, axis=1)

2.获取真实类和类标签

true_classes = test_data_generator.classes
class_labels = list(test_data_generator.class_indices.keys())

3。使用 scikit-learn 获取统计信息

report = metrics.classification_report(true_classes, predicted_classes, target_names=class_labels)
print(report)

您可以阅读更多 here

编辑:如果以上方法不起作用,请观看此视频 Create confusion matrix for predictions from Keras model .如果您有问题,可能会查看评论。或者 Make predictions with a Keras CNN Image Classifier

关于python - CNN keras中图像的混淆矩阵,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50825936/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com