作者热门文章
- xml - AJAX/Jquery XML 解析
- 具有多重继承的 XML 模式
- .net - 枚举序列化 Json 与 XML
- XML 简单类型、简单内容、复杂类型、复杂内容
我最近遇到了看起来很棒的 nv.d3 js 图形工具。我一切正常;然而.....我正在考虑将它们与用于呈现科学数据的html5幻灯片放映结合起来实现。
因此,将误差线添加到折线图和条形图中的值会很棒。它会简单地为每个定义误差条高度的数据点分配一个值。
我猜这可能很困难,但将其添加到脚本中将是一个很棒的功能。
有什么建议吗?不幸的是我不是编码员
最佳答案
所以我为此创建了一个错误栏函数,数组中 isError 的值给出了每个点的错误栏的大小:
<div id="chart2" style="height: 700px; width: 900px; margin-left:auto; margin-right:auto;">
<svg id="chart2" style="height: 700px; width: 900px;"></svg>
</div>
<script src="nv.d3.js"></script>
<script>
var charts;
nv.addGraph(Bodyweight(this));
//nv.addGraph(function() {
function Bodyweight(c) {
charts = nv.models.lineChart()
.forceY([0])
.options({
margin: {left: 100, bottom: 100},
x: function(d,i) { return i},
showXAxis: true,
showYAxis: true,
transitionDuration: 250
})
;
charts.useInteractiveGuideline(true);
var labelValues2 = ['20', '22', '24', '26', '28', '30', '32', '34', '36', '38', '40', '42', '44', '46', '48', '50'];
charts.xAxis
.axisLabel("Time (Weeks)")
//.axisLabelDistance(120)
.tickFormat(function(d){
return labelValues2[d];
});
charts.yAxis
.axisLabel('Bodyweight (g)')
.tickFormat(d3.format(',.1f'))
//.scale().domain([0, maxValue])
;
d3.select('#chart2 svg')
.datum(sinAndCos2())
.call(charts);
nv.utils.windowResize(function() { d3.select('#chart2 svg').call(charts) });
charts.dispatch.on('stateChange', function(e) { nv.log('New State:', JSON.stringify(e)); });
return charts;
};
function sinAndCos2() {
var wt_sd = [{x: 1, y: 29.7, isError: 0.8},{x: 2, y: 31.0, isError: 0.9},{x: 3, y: 30.7, isError: 1.0},{x: 4, y: 31.2, isError: 1.0},{x: 5, y: 32.3, isError: 1.2},{x: 6, y: 32.4, isError: 1.2},{x: 7, y: 33.3, isError: 1.3},{x: 8, y: 33.9, isError: 1.3},{x: 9, y: 35.3, isError: 1.3},{x: 10, y: 36.7, isError: 1.4},{x: 11, y: 36.2, isError: 1.4},{x: 12, y: 37.1, isError: 1.5},{x: 13, y: 38.3, isError: 1.6},{x: 14, y: 39.3, isError: 1.5},{x: 15, y: 40.0, isError: 1.6},{x: 16, y: 40.9, isError: 1.6}],
wt_hfd = [{x: 1, y: 29.7, isError: 0.6},{x: 2, y: 32.5, isError: 0.8},{x: 3, y: 34.8, isError: 0.9},{x: 4, y: 36.8, isError: 1.0},{x: 5, y: 38.7, isError: 1.1},{x: 6, y: 40.9, isError: 1.3},{x: 7, y: 43.0, isError: 1.5},{x: 8, y: 44.6, isError: 1.8},{x: 9, y: 46.2, isError: 1.7},{x: 10, y: 49.0, isError: 1.5},{x: 11, y: 50.3, isError: 1.5},{x: 12, y: 52.1, isError: 1.3},{x: 13, y: 52.2, isError: 1.3},{x: 14, y: 53.5, isError: 1.2},{x: 15, y: 53.8, isError: 1.2},{x: 16, y: 53.1, isError: 1.5}],
wt_cr = [{x: 1, y: 28.2, isError: 0.4},{x: 2, y: 25.5, isError: 0.3},{x: 3, y: 23.1, isError: 0.2},{x: 4, y: 23.2, isError: 0.2},{x: 5, y: 23.4, isError: 0.3},{x: 6, y: 22.5, isError: 0.3},{x: 7, y: 22.5, isError: 0.3},{x: 8, y: 23.0, isError: 0.3},{x: 9, y: 22.1, isError: 0.3},{x: 10, y: 22.4, isError: 0.3},{x: 11, y: 22.5, isError: 0.2},{x: 12, y: 23.1, isError: 0.3},{x: 13, y: 23.5, isError: 0.2},{x: 14, y: 23.6, isError: 0.3},{x: 15, y: 23.7, isError: 0.3},{x: 16, y: 23.8, isError: 0.2}],
wt_resv = [{x: 1, y: 27.6, isError: 0.3},{x: 2, y: 28.0, isError: 0.4},{x: 3, y: 27.8, isError: 0.4},{x: 4, y: 28.6, isError: 0.5},{x: 5, y: 29.2, isError: 0.5},{x: 6, y: 29.3, isError: 0.6},{x: 7, y: 29.8, isError: 0.6},{x: 8, y: 30.3, isError: 0.6},{x: 9, y: 31.3, isError: 0.8},{x: 10, y: 32.5, isError: 0.9},{x: 11, y: 32.5, isError: 1.0},{x: 12, y: 33.7, isError: 1.1},{x: 13, y: 34.5, isError: 1.1},{x: 14, y: 34.8, isError: 1.1},{x: 15, y: 34.9, isError: 1.2},{x: 16, y: 34.8, isError: 1.2}],
csb_sd = [{x: 1, y: 27.1, isError: 0.8},{x: 2, y: 27.1, isError: 0.6},{x: 3, y: 26.9, isError: 0.6},{x: 4, y: 27.7, isError: 0.8},{x: 5, y: 29.0, isError: 1.2},{x: 6, y: 29.1, isError: 1.0},{x: 7, y: 29.4, isError: 1.1},{x: 8, y: 30.0, isError: 1.2},{x: 9, y: 30.8, isError: 1.3},{x: 10, y: 31.7, isError: 1.5},{x: 11, y: 32.2, isError: 1.6},{x: 12, y: 31.9, isError: 1.4},{x: 13, y: 32.1, isError: 1.3},{x: 14, y: 31.9, isError: 1.3},{x: 15, y: 31.8, isError: 1.5},{x: 16, y: 31.8, isError: 1.5}],
csb_hfd = [{x: 1, y: 28.1, isError: 0.9},{x: 2, y: 29.4, isError: 1.1},{x: 3, y: 31.6, isError: 1.3},{x: 4, y: 34.1, isError: 1.6},{x: 5, y: 34.2, isError: 1.4},{x: 6, y: 36.3, isError: 1.5},{x: 7, y: 37.7, isError: 1.6},{x: 8, y: 40.1, isError: 1.6},{x: 9, y: 41.0, isError: 1.6},{x: 10, y: 42.8, isError: 1.6},{x: 11, y: 44.1, isError: 1.5},{x: 12, y: 44.2, isError: 1.6},{x: 13, y: 44.9, isError: 1.6},{x: 14, y: 44.8, isError: 1.6},{x: 15, y: 43.8, isError: 1.6},{x: 16, y: 44.0, isError: 1.7}],
csb_cr = [{x: 1, y: 26.1, isError: 0.8},{x: 2, y: 22.3, isError: 0.6},{x: 3, y: 20.3, isError: 0.3},{x: 4, y: 20.3, isError: 0.3},{x: 5, y: 19.8, isError: 0.3},{x: 6, y: 20.3, isError: 0.4},{x: 7, y: 19.8, isError: 0.3},{x: 8, y: 20.2, isError: 0.2},{x: 9, y: 20.3, isError: 0.2},{x: 10, y: 19.8, isError: 0.3},{x: 11, y: 20.1, isError: 0.3},{x: 12, y: 19.9, isError: 0.2},{x: 13, y: 19.7, isError: 0.4},{x: 14, y: 20.0, isError: 0.3},{x: 15, y: 20.0, isError: 0.3},{x: 16, y: 19.2, isError: 0.3}],
csb_resv = [{x: 1, y: 25.4, isError: 0.4},{x: 2, y: 26.2, isError: 1.0},{x: 3, y: 25.3, isError: 0.5},{x: 4, y: 25.8, isError: 0.6},{x: 5, y: 26.6, isError: 0.7},{x: 6, y: 27.5, isError: 0.8},{x: 7, y: 28.3, isError: 0.9},{x: 8, y: 29.3, isError: 1.1},{x: 9, y: 29.6, isError: 1.1},{x: 10, y: 30.6, isError: 1.3},{x: 11, y: 31.2, isError: 1.3},{x: 12, y: 31.9, isError: 1.2},{x: 13, y: 31.5, isError: 1.2},{x: 14, y: 31.7, isError: 1.2},{x: 15, y: 31.3, isError: 1.1},{x: 16, y: 31.4, isError: 1.2}]
;
return [
{
//area: true,
values: wt_sd,
key: "WT SD",
color: "#FF0000",
isError: true,
isFull: true
},
{
values: wt_hfd,
key: "WT HFD",
color: "#0066FF",
isError: true,
isFull: true
},
{
values: wt_cr,
key: "WT CR",
color: "#33CC33",
isError: true,
isFull: true
},
{
values: wt_resv,
key: "WT Resv",
color: "#CC00FF",
isError: true,
isFull: true
},
{
//area: true,
values: csb_sd,
key: "Csb SD",
color: "#FF0000",
isDashed: true,
isError: true,
isFull: false
},
{
values: csb_hfd,
key: "Csb HFD",
color: "#0066FF",
isDashed: true,
isError: true,
isFull: false
},
{
values: csb_cr,
key: "Csb CR",
color: "#33CC33",
isDashed: true,
isError: true,
isFull: false
},
{
values: csb_resv,
key: "Csb Resv",
color: "#CC00FF",
isDashed: true,
isError: true,
isFull: false
}
];
}
</script>
这里是来自 nv.d3.js 的更新的 chart() 函数,您可以将其复制粘贴到旧的 chart() 之上。如果您有多个需要更好地分隔的组,它还添加了使用虚线的选项;
function chart(selection) {
selection.each(function(data) {
var availableWidth = width - margin.left - margin.right,
availableHeight = height - margin.top - margin.bottom,
container = d3.select(this);
//------------------------------------------------------------
// Setup Scales
x = scatter.xScale();
y = scatter.yScale();
x0 = x0 || x;
y0 = y0 || y;
//------------------------------------------------------------
//alert(y0);
//------------------------------------------------------------
// Setup containers and skeleton of chart
var wrap = container.selectAll('g.nv-wrap.nv-line').data([data]);
var wrapEnter = wrap.enter().append('g').attr('class', 'nvd3 nv-wrap nv-line');
var defsEnter = wrapEnter.append('defs');
var gEnter = wrapEnter.append('g');
var g = wrap.select('g')
gEnter.append('g').attr('class', 'nv-groups');
gEnter.append('g').attr('class', 'nv-scatterWrap');
wrap.attr('transform', 'translate(' + margin.left + ',' + margin.top + ')');
//------------------------------------------------------------
scatter
.width(availableWidth)
.height(availableHeight)
//alert(scatter.height(availableHeight));
var scatterWrap = wrap.select('.nv-scatterWrap');
//.datum(data); // Data automatically trickles down from the wrap
scatterWrap.transition().call(scatter);
defsEnter.append('clipPath')
.attr('id', 'nv-edge-clip-' + scatter.id())
.append('rect');
wrap.select('#nv-edge-clip-' + scatter.id() + ' rect')
.attr('width', availableWidth)
.attr('height', availableHeight);
g .attr('clip-path', clipEdge ? 'url(#nv-edge-clip-' + scatter.id() + ')' : '');
scatterWrap
.attr('clip-path', clipEdge ? 'url(#nv-edge-clip-' + scatter.id() + ')' : '');
var groups = wrap.select('.nv-groups').selectAll('.nv-group')
.data(function(d) { return d }, function(d) { return d.key });
groups.enter().append('g')
.style('stroke-opacity', 1e-6)
.style('fill-opacity', 1e-6);
groups.exit()
.transition()
.style('stroke-opacity', 1e-6)
.style('fill-opacity', 1e-6)
.remove();
groups
.attr('class', function(d,i) { return 'nv-group nv-series-' + i })
.classed('hover', function(d) { return d.hover })
.style('fill', function(d,i){ return color(d, i) })
.style('stroke', function(d,i){ return color(d, i)});
groups
.transition()
.style('stroke-opacity', 1)
.style('fill-opacity', .5);
var areaPaths = groups.selectAll('path.nv-area').data(function(d) { return d.isArea ? [d] : [] }); // this is done differently than lines because I need to check if series is an area
areaPaths.enter().append('path')
.attr('class', 'nv-area')
.attr('d', function(d) {
return d3.svg.area()
.interpolate(interpolate)
.defined(defined)
.x(function(d,i) { return nv.utils.NaNtoZero(x0(getX(d,i))) })
.y0(function(d,i) { return nv.utils.NaNtoZero(y0(getY(d,i))) })
.y1(function(d,i) { return y0( y.domain()[0] <= 0 ? y.domain()[1] >= 0 ? 0 : y.domain()[1] : y.domain()[0] ) })
//.y1(function(d,i) { return y0(0) }) //assuming 0 is within y domain.. may need to tweak this
.apply(this, [d.values])
});
groups.exit().selectAll('path.nv-area')
.remove();
areaPaths
.transition()
.attr('d', function(d) {
return d3.svg.area()
.interpolate(interpolate)
.defined(defined)
.x(function(d,i) { return nv.utils.NaNtoZero(x(getX(d,i))) })
.y0(function(d,i) { return nv.utils.NaNtoZero(y(getY(d,i))) })
.y1(function(d,i) { return y( y.domain()[0] <= 0 ? y.domain()[1] >= 0 ? 0 : y.domain()[1] : y.domain()[0] ) })
//.y1(function(d,i) { return y0(0) }) //assuming 0 is within y domain.. may need to tweak this
.apply(this, [d.values])
});
var YcorMax=y.domain()[1];
var errorPaths = groups.selectAll('path.nv-error').data(function(d) { return d.isError ? [d] : [] });
errorPaths.enter().append('path')
.attr('class', 'nv-error')
.attr('d', function(d) {
return d3.svg.area()
.interpolate(interpolate)
.defined(defined)
.x(function(d,i) { return nv.utils.NaNtoZero(x0(getX(d,i))) })
.y0(function(d,i) {
var ez=Getez(d,i);
var z=nv.utils.NaNtoZero(y(getY(d,i)));
return z-((ez/YcorMax)*height);})
.y1(function(d,i) {
var ez=Getez(d,i);
var z=nv.utils.NaNtoZero(y(getY(d,i)));
return z+((ez/YcorMax)*height);})
.apply(this, [d.values])
}).style("stroke-width", ("1px")).style('fill-opacity', .2).style('stroke-opacity', .5);
groups.exit().selectAll('path.nv-error')
.remove();
errorPaths
.transition()
.attr('d', function(d) {
return d3.svg.area()
.interpolate(interpolate)
.defined(defined)
.x(function(d,i) { return nv.utils.NaNtoZero(x(getX(d,i))) })
.y0(function(d,i) {
var ez=Getez(d,i);
var z=nv.utils.NaNtoZero(y(getY(d,i)));
return z-((ez/YcorMax)*height);})
.y1(function(d,i) {
var ez=Getez(d,i);
var z=nv.utils.NaNtoZero(y(getY(d,i)));
return z+((ez/YcorMax)*height);})
.apply(this, [d.values])
});
/////
var linePaths = groups.selectAll('path.nv-line')
// .data(function(d) { return [d.values] });
.data(function (d) { return d.isDashed ? [] : [d.values] });
linePaths.enter().append('path')
.attr('class', 'nv-line')
.attr('d',
d3.svg.line()
.interpolate(interpolate)
.defined(defined)
.x(function(d,i) { return nv.utils.NaNtoZero(x0(getX(d,i))) })
.y(function(d,i) { return nv.utils.NaNtoZero(y0(getY(d,i))) })
).style("stroke-width", ("4px"));
// );
groups.exit().selectAll('path.nv-line')
.transition()
.attr('d',
d3.svg.line()
.interpolate(interpolate)
.defined(defined)
.x(function(d,i) { return nv.utils.NaNtoZero(x(getX(d,i))) })
.y(function(d,i) { return nv.utils.NaNtoZero(y(getY(d,i))) })
);
linePaths
.transition()
.attr('d',
d3.svg.line()
.interpolate(interpolate)
.defined(defined)
.x(function(d,i) { return nv.utils.NaNtoZero(x(getX(d,i))) })
.y(function(d,i) { return nv.utils.NaNtoZero(y(getY(d,i))) })
);
var dashedLinePaths = groups.selectAll('path.nv-line')
.data(function (d) { return d.isDashed ? [d.values] : [] });
dashedLinePaths.enter().append('path')
.attr('class', 'nv-line')
.attr('d',
d3.svg.line()
.interpolate(interpolate)
.defined(defined)
.x(function(d,i) { return nv.utils.NaNtoZero(x0(getX(d,i))) })
.y(function(d,i) { return nv.utils.NaNtoZero(y0(getY(d,i))) })
).style("stroke-dasharray", ("10, 10")).style("stroke-width", ("4px"));
//).style("stroke-dasharray", ("10, 10"));
dashedLinePaths
.transition()
.attr('d',
d3.svg.line()
.interpolate(interpolate)
.defined(defined)
.x(function(d,i) { return nv.utils.NaNtoZero(x(getX(d,i))) })
.y(function(d,i) { return nv.utils.NaNtoZero(y(getY(d,i))) })
);
//store old scales for use in transitions on update
x0 = x.copy();
y0 = y.copy();
});
return chart;
}
关于javascript - 如何将误差线添加到 nvd3.js 图表中的折线图,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19822034/
我是一名优秀的程序员,十分优秀!