- xml - AJAX/Jquery XML 解析
- 具有多重继承的 XML 模式
- .net - 枚举序列化 Json 与 XML
- XML 简单类型、简单内容、复杂类型、复杂内容
基于上一个问题 ( see here ),我试图通过 xmlEventParse 读取许多大型 xml 文件,同时保存节点变化数据。使用此示例 xml:https://www.nlm.nih.gov/databases/dtd/medsamp2015.xml .
下面的代码使用 xpathSapply 来提取必要的值和一系列 if 语句,以将唯一值 (PMID) 与记录中的每个非唯一值 (LastName) 匹配的方式组合这些值 - 对于其中可能没有姓氏。目标是在此过程中编写一系列小型 csv(此处,在每 1000 个姓氏之后)以最大限度地减少内存使用量。
当在全尺寸数据集上运行时,代码成功地批量输出文件,但是内存中仍然存储着一些东西,一旦所有 RAM 被使用,最终会导致系统错误。我在代码运行时观察了任务管理器,可以看到 R 的内存随着程序的进行而增长。如果我在运行中停止程序然后清除 R 工作区,包括隐藏的项目,内存似乎仍在被 R 使用。直到我关闭 R 内存才再次释放。
自己运行几次,您会发现即使在清理工作区后,R 的内存使用量也会增加。
求助!对于以这种方式阅读大型 XML 文件的其他人来说,这个问题似乎很常见(参见示例评论 in this question)。
我的代码如下:
library(XML)
filename <- "~/Desktop/medsamp2015.xml"
tempdat <- data.frame(pmid=as.numeric(),
lname=character(),
stringsAsFactors=FALSE)
cnt <- 1
branchFunction <- function() {
func <- function(x, ...) {
v1 <- xpathSApply(x, path = "//PMID", xmlValue)
v2 <- xpathSApply(x, path = "//Author/LastName", xmlValue)
print(cbind(c(rep(v1,length(v2))), v2))
#below is where I store/write the temp data along the way
#but even without doing this, memory is used (even after clearing)
tempdat <<- rbind(tempdat,cbind(c(rep(v1,length(v2))), v2))
if (nrow(tempdat) > 1000){
outname <- paste0("~/Desktop/outfiles",cnt,".csv")
write.csv(tempdat, outname , row.names = F)
tempdat <<- data.frame(pmid=as.numeric(),
lname=character(),
stringsAsFactors=FALSE)
cnt <<- cnt+1
}
}
list(MedlineCitation = func)
}
myfunctions <- branchFunction()
#RUN
xmlEventParse(
file = filename,
handlers = NULL,
branches = myfunctions
)
最佳答案
这是一个示例,我们有一个启动脚本 invoke.sh
,它调用 R 脚本并将 url 和文件名作为参数传递...在这种情况下,我之前已经下载了测试文件 medsamp2015.xml并放入./data
目录。
invoke.sh
脚本中创建一个循环并遍历目标文件名列表。对于调用 R 实例的每个文件,下载它,处理文件并继续下一个。 警告:我没有针对任何其他下载文件和格式检查或更改您的功能。我将通过删除第 62 行的 print() 包装器来关闭输出的打印。
print( cbind(c(rep(v1, length(v2))), v2))
.csv
文件放在 ./data
目录中。注意:这是我之前就此主题提供的答案的派生词: R memory not released in Windows .我希望它通过示例有所帮助。
1 #!/usr/local/bin/bash -x
2
3 R --no-save -q --slave < ./47162861.R --args "https://www.nlm.nih.gov/databases/dtd" "medsamp2015.xml"
47162861.R
# Set working directory
projectDir <- "~/dev/stackoverflow/47162861"
setwd(projectDir)
# -----------------------------------------------------------------------------
# Load required Packages...
requiredPackages <- c("XML")
ipak <- function(pkg) {
new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
if (length(new.pkg))
install.packages(new.pkg, dependencies = TRUE)
sapply(pkg, require, character.only = TRUE)
}
ipak(requiredPackages)
# -----------------------------------------------------------------------------
# Load required Files
# trailingOnly=TRUE means that only your arguments are returned
args <- commandArgs(trailingOnly = TRUE)
if ( length(args) != 0 ) {
dataDir <- file.path(projectDir,"data")
fileUrl = args[1]
fileName = args[2]
} else {
dataDir <- file.path(projectDir,"data")
fileUrl <- "https://www.nlm.nih.gov/databases/dtd"
fileName <- "medsamp2015.xml"
}
# -----------------------------------------------------------------------------
# Download file
# Does the directory Exist? If it does'nt create it
if (!file.exists(dataDir)) {
dir.create(dataDir)
}
# Now we check if we have downloaded the data already if not we download it
if (!file.exists(file.path(dataDir, fileName))) {
download.file(fileUrl, file.path(dataDir, fileName), method = "wget")
}
# -----------------------------------------------------------------------------
# Now we extrat the data
tempdat <- data.frame(pmid = as.numeric(), lname = character(),
stringsAsFactors = FALSE)
cnt <- 1
branchFunction <- function() {
func <- function(x, ...) {
v1 <- xpathSApply(x, path = "//PMID", xmlValue)
v2 <- xpathSApply(x, path = "//Author/LastName", xmlValue)
print(cbind(c(rep(v1, length(v2))), v2))
# below is where I store/write the temp data along the way
# but even without doing this, memory is used (even after
# clearing)
tempdat <<- rbind(tempdat, cbind(c(rep(v1, length(v2))),
v2))
if (nrow(tempdat) > 1000) {
outname <- file.path(dataDir, paste0(cnt, ".csv")) # Create FileName
write.csv(tempdat, outname, row.names = F) # Write File to created directory
tempdat <<- data.frame(pmid = as.numeric(), lname = character(),
stringsAsFactors = FALSE)
cnt <<- cnt + 1
}
}
list(MedlineCitation = func)
}
myfunctions <- branchFunction()
# -----------------------------------------------------------------------------
# RUN
xmlEventParse(file = file.path(dataDir, fileName),
handlers = NULL,
branches = myfunctions)
~/dev/stackoverflow/47162861/data/medsamp2015.xml
$ ll
total 2128
drwxr-xr-x@ 7 hidden staff 238B Nov 10 11:05 .
drwxr-xr-x@ 9 hidden staff 306B Nov 10 11:11 ..
-rw-r--r--@ 1 hidden staff 32K Nov 10 11:12 1.csv
-rw-r--r--@ 1 hidden staff 20K Nov 10 11:12 2.csv
-rw-r--r--@ 1 hidden staff 23K Nov 10 11:12 3.csv
-rw-r--r--@ 1 hidden staff 37K Nov 10 11:12 4.csv
-rw-r--r--@ 1 hidden staff 942K Nov 10 11:05 medsamp2015.xml
> ./invoke.sh > runtime.txt
+ R --no-save -q --slave --args https://www.nlm.nih.gov/databases/dtd medsamp2015.xml
Loading required package: XML
文件:runtime.txt
关于R:巨大(> 20GB)文件的xmlEventParse期间的内存管理,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47162861/
我通过在共享首选项中使用 GSON 将其转换为 json 来存储我的复杂对象。但是在检索它时,无法获得预期的字符串。 代码 这里 holderListCustomizationMap 是对象的复杂映射
因此,我正在尝试对大于可用RAM的gz压缩文件执行某种面向行的操作,因此排除了将其首先读取为字符串的情况。问题是,如何在rust(缺少gunzip file.gz|./my-rust-program)
我试图更好地理解为什么具有潜在大精度的大数字处理不一致,特别是在 JavaScript 及其本地化工具(例如 ECMA-402/Intl)中。我假设这与 float 的使用有关,但我想了解限制在哪里和
我们有一个 5GB 的 csv 文件,这是我们业务的主列表。 有多个类别,每个类别包含数千条记录。我们的目标是将每个类别导出为其自己的 csv 文件。 我们如何运行查询并导出数据? 运行 OSX。有没
基于上一个问题 ( see here ),我试图通过 xmlEventParse 读取许多大型 xml 文件,同时保存节点变化数据。使用此示例 xml:https://www.nlm.nih.gov/
我正在开发一个系统,它加载一个巨大的 CSV 文件(超过 100 万行)并保存到数据库中。每行也有超过一千个字段。 CSV 文件被视为一个批处理,每一行都被视为其子对象。在添加对象的过程中,每个对象都
借助node-google模块 我编写了一个简单的 Node 模块来为我的网络应用程序启用“文本网络搜索”功能,并在我的一个 View 中显示结果。 由于在来自同一 IP 的少量查询后 Google
我有相当大的 4D 阵列 [20x20x40x15000],我使用 h5py 将其作为 HDF5 文件保存到磁盘.现在的问题是我想计算整个数组的平均值,即使用: numpy.average(HDF5_
我在遗留代码库中连接巨大的 CString 时遇到问题。 CStrings 可以包含 base64 编码的文件,因此可能很大。在某些时候,这些 CString 会像这样连接起来: result +=
我正在尝试让我的服务器提供来自另一台服务器的巨大文件。但是,为了保护我的凭据免受该远程服务器的攻击,我不能简单地将请求者重定向到文件 url;另一方面,虽然使用 StreamingHttpRespon
感谢对此的任何见解,我有 2 个问题: 1) 弄清楚为什么我的本地数据库 oplog 庞大且不断增长 2) 安全删除(或重置)我的 local.oplog 以释放 18 GB 的浪费空间 场景:我一直
我的预期任务:获取大量数据(1 GB 及更多大小)json 字符串,操作(进行一些格式化、解析 json、重组 json 数据)并写入新格式化的 json 字符串作为响应。处理这种情况的更好方法是什么
我做了一个小的 Angular 4 应用程序,但我不知道如何应用 tree shaking 和 aot 编译。我运行的命令如下: ng build --prod --aot 但我得到的结果仍然很大,供
我是一名优秀的程序员,十分优秀!