- r - 以节省内存的方式增长 data.frame
- ruby-on-rails - ruby/ruby on rails 内存泄漏检测
- android - 无法解析导入android.support.v7.app
- UNIX 域套接字与共享内存(映射文件)
我需要使用 Python 3 在 Flask 应用程序中保存一次并多次加载一些大数组。我最初使用 json 库将这些数组存储在磁盘上。为了加快速度,我在同一台机器上使用 Redis 通过将数组序列化为 JSON 字符串来存储数组。我想知道为什么我没有任何改进(实际上它在我使用的服务器上花费了更多时间)而 Redis 将数据保存在 RAM 中。我猜 JSON 序列化没有优化,但我不知道如何加快它:
import json
import redis
import os
import time
current_folder = os.path.dirname(os.path.abspath(__file__))
file_path = os.path.join(current_folder, "my_file")
my_array = [1]*10000000
with open(file_path, 'w') as outfile:
json.dump(my_array, outfile)
start_time = time.time()
with open(file_path, 'r') as infile:
my_array = json.load(infile)
print("JSON from disk : ", time.time() - start_time)
r = redis.Redis()
my_array_as_string = json.dumps(my_array)
r.set("my_array_as_string", my_array_as_string)
start_time = time.time()
my_array_as_string = r.get("my_array_as_string")
print("Fetch from Redis:", time.time() - start_time)
start_time = time.time()
my_array = json.loads(my_array_as_string)
print("Parse JSON :", time.time() - start_time)
结果:
JSON from disk : 1.075700044631958
Fetch from Redis: 0.078125
Parse JSON : 1.0247752666473389
编辑:似乎从redis 获取实际上很快,但JSON 解析很慢。有没有办法在没有 JSON 序列化部分的情况下直接从 Redis 获取数组?这就是我们用 pyMySQL 所做的,而且速度很快。
最佳答案
更新:2019 年 11 月 8 日——在 Python3.6 上运行相同的测试
结果:
转储时间:JSON > msgpack > pickle > marshal
加载时间:JSON > pickle > msgpack > marshal
空格:marshal > JSON > pickle > msgpack
+---------+-----------+-----------+-------+
| package | dump time | load time | size |
+---------+-----------+-----------+-------+
| json | 0.00134 | 0.00079 | 30049 |
| pickle | 0.00023 | 0.00019 | 20059 |
| msgpack | 0.00031 | 0.00012 | 10036 |
| marshal | 0.00022 | 0.00010 | 50038 |
+---------+-----------+-----------+-------+
我试过 pickle vs json vs msgpack vs marshal。
Pickle 比 JSON 快得多。msgpack 至少比 JSON 快 4 倍。MsgPack 看起来是您拥有的最佳选择。
编辑:编码(marshal)也试过。 Marshal 比 JSON 快,但比 msgpack 慢。
所用时间:Pickle > JSON > Marshal > MsgPack
占用空间:Marshal > Pickle > Json > MsgPack
import time
import json
import pickle
import msgpack
import marshal
import sys
array = [1]*10000
start_time = time.time()
json_array = json.dumps(array)
print "JSON dumps: ", time.time() - start_time
print "JSON size: ", sys.getsizeof(json_array)
start_time = time.time()
_ = json.loads(json_array)
print "JSON loads: ", time.time() - start_time
# --------------
start_time = time.time()
pickled_object = pickle.dumps(array)
print "Pickle dumps: ", time.time() - start_time
print "Pickle size: ", sys.getsizeof(pickled_object)
start_time = time.time()
_ = pickle.loads(pickled_object)
print "Pickle loads: ", time.time() - start_time
# --------------
start_time = time.time()
package = msgpack.dumps(array)
print "Msg Pack dumps: ", time.time() - start_time
print "MsgPack size: ", sys.getsizeof(package)
start_time = time.time()
_ = msgpack.loads(package)
print "Msg Pack loads: ", time.time() - start_time
# --------------
start_time = time.time()
m_package = marshal.dumps(array)
print "Marshal dumps: ", time.time() - start_time
print "Marshal size: ", sys.getsizeof(m_package)
start_time = time.time()
_ = marshal.loads(m_package)
print "Marshal loads: ", time.time() - start_time
结果:
JSON dumps: 0.000760078430176
JSON size: 30037
JSON loads: 0.000488042831421
Pickle dumps: 0.0108790397644
Pickle size: 40043
Pickle loads: 0.0100247859955
Msg Pack dumps: 0.000202894210815
MsgPack size: 10040
Msg Pack loads: 7.58171081543e-05
Marshal dumps: 0.000118017196655
Marshal size: 50042
Marshal loads: 0.000118970870972
关于python - 在 Python 中使用 Redis 将数据保存在内存中的最快方法,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52298118/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!