gpt4 book ai didi

java - 在 Swift 中使用反向传播的简单神经网络

转载 作者:IT王子 更新时间:2023-10-29 05:52:22 26 4
gpt4 key购买 nike

我正在尝试使用反向传播实现一个非常简单的神经网络。我尝试使用 AND 逻辑运算符训练网络。但是预测它对我不起作用。 :(

    public class ActivationFunction {

class func sigmoid(x: Float) -> Float {
return 1.0 / (1.0 + exp(-x))
}

class func dSigmoid(x: Float) -> Float {
return x * (1 - x)
}
}

public class NeuralNetConstants {

public static let learningRate: Float = 0.3
public static let momentum: Float = 0.6
public static let iterations: Int = 100000

}

public class Layer {

private var output: [Float]
private var input: [Float]
private var weights: [Float]
private var dWeights: [Float]

init(inputSize: Int, outputSize: Int) {
self.output = [Float](repeating: 0, count: outputSize)
self.input = [Float](repeating: 0, count: inputSize + 1)
self.weights = [Float](repeating: (-2.0...2.0).random(), count: (1 + inputSize) * outputSize)
self.dWeights = [Float](repeating: 0, count: weights.count)
}

public func run(inputArray: [Float]) -> [Float] {

input = inputArray
input[input.count-1] = 1
var offSet = 0

for i in 0..<output.count {
for j in 0..<input.count {
output[i] += weights[offSet+j] * input[j]
}

output[i] = ActivationFunction.sigmoid(x: output[i])
offSet += input.count

}

return output
}

public func train(error: [Float], learningRate: Float, momentum: Float) -> [Float] {

var offset = 0
var nextError = [Float](repeating: 0, count: input.count)

for i in 0..<output.count {

let delta = error[i] * ActivationFunction.dSigmoid(x: output[i])

for j in 0..<input.count {
let weightIndex = offset + j
nextError[j] = nextError[j] + weights[weightIndex] * delta
let dw = input[j] * delta * learningRate
weights[weightIndex] += dWeights[weightIndex] * momentum + dw
dWeights[weightIndex] = dw
}

offset += input.count
}

return nextError
}

}

public class BackpropNeuralNetwork {

private var layers: [Layer] = []

public init(inputSize: Int, hiddenSize: Int, outputSize: Int) {
self.layers.append(Layer(inputSize: inputSize, outputSize: hiddenSize))
self.layers.append(Layer(inputSize: hiddenSize, outputSize: outputSize))
}

public func getLayer(index: Int) -> Layer {
return layers[index]
}

public func run(input: [Float]) -> [Float] {

var activations = input

for i in 0..<layers.count {
activations = layers[i].run(inputArray: activations)
}

return activations
}

public func train(input: [Float], targetOutput: [Float], learningRate: Float, momentum: Float) {

let calculatedOutput = run(input: input)
var error = [Float](repeating: 0, count: calculatedOutput.count)

for i in 0..<error.count {
error[i] = targetOutput[i] - calculatedOutput[i]
}

for i in (0...layers.count-1).reversed() {
error = layers[i].train(error: error, learningRate: learningRate, momentum: momentum)
}


}


}

extension ClosedRange where Bound: FloatingPoint {
public func random() -> Bound {
let range = self.upperBound - self.lowerBound
let randomValue = (Bound(arc4random_uniform(UINT32_MAX)) / Bound(UINT32_MAX)) * range + self.lowerBound
return randomValue
}
}

这是我的训练数据,我只想让我的网络学习简单的 AND 逻辑运算符。

我的输入数据:

let traningData: [[Float]] = [ [0,0], [0,1], [1,0], [1,1] ]

let traningResults: [[Float]] = [ [0], [0], [0], [1] ]

let backProb = BackpropNeuralNetwork(inputSize: 2, hiddenSize: 3, outputSize: 1)

for iterations in 0..<NeuralNetConstants.iterations {

for i in 0..<traningResults.count {
backProb.train(input: traningData[i], targetOutput: traningResults[i], learningRate: NeuralNetConstants.learningRate, momentum: NeuralNetConstants.momentum)
}

for i in 0..<traningResults.count {
var t = traningData[i]
print("\(t[0]), \(t[1]) -- \(backProb.run(input: t)[0])")
}

}

这是我的神经网络的全部代码。代码不是很 swift ,但我认为首先更重要的是理解神经网络的理论,然后代码会更 swift 。

问题是我的结果是完全错误的。这是我得到的

0.0, 0.0  -- 0.246135
0.0, 1.0 -- 0.251307
1.0, 0.0 -- 0.24325
1.0, 1.0 -- 0.240923

这就是我想要的

0,0, 0,0 -- 0,000
0,0, 1,0 -- 0,005
1,0, 0,0 -- 0,005
1,0, 1,0 -- 0,992

作为比较,java 实现工作正常..

public class ActivationFunction {

public static float sigmoid(float x) {
return (float) (1 / (1 + Math.exp(-x)));
}

public static float dSigmoid(float x) {
return x*(1-x); // because the output is the sigmoid(x) !!! we dont have to apply it twice
}
}

public class NeuralNetConstants {

private NeuralNetConstants() {

}

public static final float LEARNING_RATE = 0.3f;
public static final float MOMENTUM = 0.6f;
public static final int ITERATIONS = 100000;
}

public class Layer {

private float[] output;
private float[] input;
private float[] weights;
private float[] dWeights;
private Random random;

public Layer(int inputSize, int outputSize) {
output = new float[outputSize];
input = new float[inputSize + 1];
weights = new float[(1 + inputSize) * outputSize];
dWeights = new float[weights.length];
this.random = new Random();
initWeights();
}

public void initWeights() {
for (int i = 0; i < weights.length; i++) {
weights[i] = (random.nextFloat() - 0.5f) * 4f;
}
}

public float[] run(float[] inputArray) {

System.arraycopy(inputArray, 0, input, 0, inputArray.length);
input[input.length - 1] = 1; // bias
int offset = 0;

for (int i = 0; i < output.length; i++) {
for (int j = 0; j < input.length; j++) {
output[i] += weights[offset + j] * input[j];
}
output[i] = ActivationFunction.sigmoid(output[i]);
offset += input.length;
}

return Arrays.copyOf(output, output.length);
}

public float[] train(float[] error, float learningRate, float momentum) {

int offset = 0;
float[] nextError = new float[input.length];

for (int i = 0; i < output.length; i++) {

float delta = error[i] * ActivationFunction.dSigmoid(output[i]);
for (int j = 0; j < input.length; j++) {
int previousWeightIndex = offset + j;
nextError[j] = nextError[j] + weights[previousWeightIndex] * delta;
float dw = input[j] * delta * learningRate;
weights[previousWeightIndex] += dWeights[previousWeightIndex] * momentum + dw;
dWeights[previousWeightIndex] = dw;
}

offset += input.length;
}

return nextError;
}
}

public class BackpropNeuralNetwork {

private Layer[] layers;

public BackpropNeuralNetwork(int inputSize, int hiddenSize, int outputSize) {
layers = new Layer[2];
layers[0] = new Layer(inputSize, hiddenSize);
layers[1] = new Layer(hiddenSize, outputSize);
}

public Layer getLayer(int index) {
return layers[index];
}

public float[] run(float[] input) {
float[] inputActivation = input;
for (int i = 0; i < layers.length; i++) {
inputActivation = layers[i].run(inputActivation);
}
return inputActivation;
}

public void train(float[] input, float[] targetOutput, float learningRate, float momentum) {

float[] calculatedOutput = run(input);
float[] error = new float[calculatedOutput.length];

for (int i = 0; i < error.length; i++) {
error[i] = targetOutput[i] - calculatedOutput[i];
}

for (int i = layers.length - 1; i >= 0; i--) {
error = layers[i].train(error, learningRate, momentum);
}
}
}

public class NeuralNetwork {

/**
* @param args the command line arguments
*/
public static void main(String[] args) {
float[][] trainingData = new float[][] {
new float[] { 0, 0 },
new float[] { 0, 1 },
new float[] { 1, 0 },
new float[] { 1, 1 }
};

float[][] trainingResults = new float[][] {
new float[] { 0 },
new float[] { 0 },
new float[] { 0 },
new float[] { 1 }
};

BackpropNeuralNetwork backpropagationNeuralNetworks = new BackpropNeuralNetwork(2, 3,1);

for (int iterations = 0; iterations < NeuralNetConstants.ITERATIONS; iterations++) {

for (int i = 0; i < trainingResults.length; i++) {
backpropagationNeuralNetworks.train(trainingData[i], trainingResults[i],
NeuralNetConstants.LEARNING_RATE, NeuralNetConstants.MOMENTUM);
}

System.out.println();
for (int i = 0; i < trainingResults.length; i++) {
float[] t = trainingData[i];
System.out.printf("%d epoch\n", iterations + 1);
System.out.printf("%.1f, %.1f --> %.3f\n", t[0], t[1], backpropagationNeuralNetworks.run(t)[0]);
}
}
}

}

最佳答案

您正在以不同方式初始化您的权重。您正在创建一个随机值并经常使用它。您要做的是为数组中的每个权重创建一个随机值:替换

self.weights = [Float](repeating: (-2.0...2.0).random(), count: (1 + inputSize) * outputSize)

self.weights = (0..<(1 + inputSize) * outputSize).map { _ in
return (-2.0...2.0).random()
}

除此之外:请考虑仅覆盖 Layer.run 方法中输入的第一个元素。所以不是

input =  inputArray

你应该这样做:

for (i, e) in inputArray {
self.input[i] = e
}

关于java - 在 Swift 中使用反向传播的简单神经网络,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42940335/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com