- r - 以节省内存的方式增长 data.frame
- ruby-on-rails - ruby/ruby on rails 内存泄漏检测
- android - 无法解析导入android.support.v7.app
- UNIX 域套接字与共享内存(映射文件)
.NET 4.0 为任意大的整数提供了 System.Numerics.BigInteger
类型。我需要计算 BigInteger
的平方根(或合理的近似值——例如整数平方根)。这样我就不必重新实现轮子,有人对此有很好的扩展方法吗?
最佳答案
Check if BigInteger is not a perfect square具有计算 Java BigInteger 的整数平方根的代码。这里翻译成C#,作为扩展方法。
public static BigInteger Sqrt(this BigInteger n)
{
if (n == 0) return 0;
if (n > 0)
{
int bitLength = Convert.ToInt32(Math.Ceiling(BigInteger.Log(n, 2)));
BigInteger root = BigInteger.One << (bitLength / 2);
while (!isSqrt(n, root))
{
root += n / root;
root /= 2;
}
return root;
}
throw new ArithmeticException("NaN");
}
private static Boolean isSqrt(BigInteger n, BigInteger root)
{
BigInteger lowerBound = root*root;
BigInteger upperBound = (root + 1)*(root + 1);
return (n >= lowerBound && n < upperBound);
}
非正式测试表明,对于小整数,这比 Math.Sqrt 慢 75 倍。 VS 分析器将 isSqrt 中的乘法指向热点。
关于c# - 计算 BigInteger 的平方根 (System.Numerics.BigInteger),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/3432412/
出于某种原因,我的平方根程序得到的答案与大多数输入应得到的答案略有不同。我不确定这是为什么。只有某些输入是错误的。在给出答案后的最后我也遇到了段错误,我不确定为什么会这样。 #include #inc
我目前正在实现一个可以处理与物理单位相关的数字数据的类。 我想实现一种计算实例平方根的方法。假设您有一个具有属性值和名称的类的实例: from math import sqrt class Foo:
我正在使用 HTML + CSS + AngularJS 制作一个简单的计算器。一切正常,但我想添加一个 SquareRoot 函数。这是一些代码: function _solve(){ switc
问题是关于在通用数值接口(interface)中定义平方根算法的问题的策略方法。我知道存在解决不同条件下问题的算法。我对以下算法感兴趣: 仅使用选定的函数解决问题; 不关心操作的对象是整数、 floa
好吧,我已经研究了一段时间了,我知道我的逻辑是正确的,但是,我似乎无法生成正数的正确底平方根。 public int mySqrt(int x) { if(x 0) uppe
我找不到让这个函数 Math.sqrt(value) 工作的方法。 (╯°□°)╯︵┻━┻我不确定,但问题似乎出在运营商。我还尝试在 const calculation 中添加该函数,但它也不起作用。
我发现了这段获得平方根的代码,令我惊讶的是它的工作方式,使用 union 和位移这是代码: float sqrt3(const float x) { union { int i;
在 python 中使用 sqrt 函数时,我遇到了“distance ValueError: math domain error”问题。 这是我的代码: from math import sqrt
我一直在做一些研究,寻找一种对大整数进行运算的相对快速的平方根算法。我在这里找到了几个例程。第一个(下面)是用 C 语言编写的... int isqrt(int n) { int b = 0;
好吧,我想知道 math.h 平方根与其中包含神奇数字的那个(因 Quake 而出名,但由 SGI 制作)相比有多快。 但这对我来说是一个受伤的世界。 我首先在 Mac 上尝试了此操作,其中 math
有谁知道如何解决这个复发? 大定理在这里不起作用。 最佳答案 这在 O(1) 中似乎很明显,因为 T(n) = T(n - sqrt(n)) = T(m) with 0 < m < n 通过归纳,你得
我是一名优秀的程序员,十分优秀!