- r - 以节省内存的方式增长 data.frame
- ruby-on-rails - ruby/ruby on rails 内存泄漏检测
- android - 无法解析导入android.support.v7.app
- UNIX 域套接字与共享内存(映射文件)
我制作了一段可在 Windows 上运行的 Python 深度学习代码原型(prototype),但无法使其在 Linux 上运行。我确定问题来自 load_model。这是一段在 Windows 和 Linux 中表现不同的 Python 代码。
两个 Keras 安装都是从 Keras Team 的 github 源代码库进行的,因为标准 Keras 包无法识别模型格式,最近为 Github 源代码中的字符格式做了一个补丁。
你知道发生了什么事吗?
代码:
from keras.models import load_model, Model
import sys
import keras
import tensorflow as tf
import os
import platform
print("----------------------------------------------")
print("Operating system:")
print (os.name)
print(platform.system())
print(platform.release())
print("----------------------------------------------")
print("Python version:")
print(sys.version)
print("----------------------------------------------")
print("Tensorflow version: ", tf.__version__)
print("----------------------------------------------")
print("Keras version : ", keras.__version__)
print("----------------------------------------------")
yolo_model = load_model("model.h5")
Windows 输出:
Using TensorFlow backend.
----------------------------------------------
Operating system:
nt
Windows
7
----------------------------------------------
Python version:
3.6.0 (v3.6.0:41df79263a11, Dec 23 2016, 08:06:12) [MSC v.1900 64 bit (AMD64)]
----------------------------------------------
Tensorflow version: 1.4.0
----------------------------------------------
Keras version : 2.1.2
----------------------------------------------
2018-01-06 21:54:37.700794: I C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:137] Your CPU supports instruc
ions that this TensorFlow binary was not compiled to use: AVX AVX2
C:\Users\David\AppData\Local\Programs\Python\Python36\lib\site-packages\keras-2.1.2-py3.6.egg\keras\models.py:252: UserWarning: No training configuration found
in save file: the model was *not* compiled. Compile it manually.
Linux 输出:
Using TensorFlow backend.
----------------------------------------------
Operating system:
posix
Linux
4.9.0-5-amd64
----------------------------------------------
Python version:
3.5.3 (default, Jan 19 2017, 14:11:04)
[GCC 6.3.0 20170118]
----------------------------------------------
Tensorflow version: 1.4.1
----------------------------------------------
Keras version : 2.1.2
----------------------------------------------
----------------------------------------------
2018-01-06 21:47:58.099715: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX
Erreur de segmentation
法语Erreur de segmentation的意思是Segmentation fault
感谢您的帮助!
玻璃蛙
最佳答案
我只找到了一个解决方法。
由于模型文件是从另一种格式的另一个权重文件转换而来的数据,我去为最新版本的 Keras 重新生成了 Keras 模型。
现在可以了。
但我仍然不知道是什么导致了段错误。
关于linux - Linux 上的 load_model 上的 Keras 段错误,而不是 Windows 上的,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48131965/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!