- r - 以节省内存的方式增长 data.frame
- ruby-on-rails - ruby/ruby on rails 内存泄漏检测
- android - 无法解析导入android.support.v7.app
- UNIX 域套接字与共享内存(映射文件)
当我观察到一些奇怪的事情时,我对 R 中矩阵的内存使用很感兴趣。在一个循环中,我增加了矩阵的列数,并计算了每一步的对象大小,如下所示:
x <- 10
size <- matrix(1:x, x, 2)
for (i in 1:x){
m <- matrix(1, 2, i)
size[i,2] <- object.size(m)
}
这给了
plot(size[,1], size[,2], xlab="n columns", ylab="memory")
似乎具有 2 行和 5、6、7 或 8 列的矩阵使用完全相同的内存。我们该如何解释呢?
最佳答案
要了解这里发生了什么,您需要了解一点与 R 中的对象相关的内存开销。每个对象,即使是没有数据的对象,都有 40 字节的数据与之相关:
x0 <- numeric()
object.size(x0)
# 40 bytes
此内存用于存储对象的类型(由 typeof()
返回),以及内存管理所需的其他元数据。
忽略此开销后,您可能会认为向量的内存使用量与向量的长度成正比。让我们用几个图来检查一下:
sizes <- sapply(0:50, function(n) object.size(seq_len(n)))
plot(c(0, 50), c(0, max(sizes)), xlab = "Length", ylab = "Bytes",
type = "n")
abline(h = 40, col = "grey80")
abline(h = 40 + 128, col = "grey80")
abline(a = 40, b = 4, col = "grey90", lwd = 4)
lines(sizes, type = "s")
看起来内存使用量与向量的长度大致成正比,但在 168 字节处有一个很大的不连续性,每隔几步就会有一个小的不连续性。最大的不连续性是因为 R 有两个向量存储池:由 R 管理的小向量和由操作系统管理的大向量(这是一种性能优化,因为分配大量少量内存是昂贵的)。小向量只能是 8、16、32、48、64 或 128 字节长,一旦我们去除 40 字节的开销,这正是我们所看到的:
sizes - 40
# [1] 0 8 8 16 16 32 32 32 32 48 48 48 48 64 64 64 64 128 128 128 128
# [22] 128 128 128 128 128 128 128 128 128 128 128 128 136 136 144 144 152 152 160 160 168
# [43] 168 176 176 184 184 192 192 200 200
从 64 到 128 的步长导致了大步,然后一旦我们进入大向量池,向量被分配为 8 字节的 block (内存以一定大小为单位,R 不能问半个单位):
# diff(sizes)
# [1] 8 0 8 0 16 0 0 0 16 0 0 0 16 0 0 0 64 0 0 0 0 0 0 0 0 0 0 0
# [29] 0 0 0 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
那么,这种行为与您在矩阵中看到的情况有何对应?好吧,首先我们需要看看与矩阵相关的开销:
xv <- numeric()
xm <- matrix(xv)
object.size(xm)
# 200 bytes
object.size(xm) - object.size(xv)
# 160 bytes
因此,与向量相比,矩阵需要额外的 160 字节存储空间。为什么是 160 字节?这是因为矩阵有一个包含两个整数的 dim
属性,并且属性存储在 pairlist
(旧版本的 list()
)中:
object.size(pairlist(dims = c(1L, 1L)))
# 160 bytes
如果我们使用矩阵而不是向量重新绘制之前的图,并将 y 轴上的所有常数增加 160,您可以看到不连续性正好对应于从小向量池到大向量池的跳转:
msizes <- sapply(0:50, function(n) object.size(as.matrix(seq_len(n))))
plot(c(0, 50), c(160, max(msizes)), xlab = "Length", ylab = "Bytes",
type = "n")
abline(h = 40 + 160, col = "grey80")
abline(h = 40 + 160 + 128, col = "grey80")
abline(a = 40 + 160, b = 4, col = "grey90", lwd = 4)
lines(msizes, type = "s")
关于r - 不同大小的矩阵的相同内存使用,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/18465592/
假设我有两个矩阵,每个矩阵有两列和不同的行数。我想检查并查看一个矩阵的哪些对在另一个矩阵中。如果这些是一维的,我通常只会做 a %in% x得到我的结果。 match似乎只适用于向量。 > a
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 9 个月前。 Improv
我只处理过 DirectX 矩阵 我读过一些文章,说不能将 DirectX 矩阵数学库用于 openGL 矩阵。 但我也读过,如果你的数学是一致的,你可以获得类似的结果。那只会让我更加困惑。 任何人都
我编写了一个C++代码来解决线性系统A.x = b,其中A是一个对称矩阵,方法是首先使用LAPACK(E)对角矩阵A = V.D.V^T(因为以后需要特征值),然后求解x = A^-1.b = V^T
我遇到了问题。我想创建二维数组 rows=3 cols=2我的代码如下 int **ptr; int row=3; int col=2; ptr=new int *[col]; for (int i=
我有一个 3d mxnxt 矩阵,我希望能够提取 t 2d nxm 矩阵。在我的例子中,我有一个 1024x1024x10 矩阵,我想要 10 张图像显示给我。 这不是 reshape ,我每次只需要
我在 MATLAB 中有一个 3d 矩阵 (n-by-m-by-t) 表示一段时间内网格中的 n-by-m 测量值.我想要一个二维矩阵,其中空间信息消失了,只剩下 n*m 随着时间 t 的测量值(即:
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
使用 eigen2 , 并给定一个矩阵 A a_0_0, a_0_1, a_0_2, ... a_1_0, a_1_0, a_1_2, ... ... 和一个矩阵B: b_0_0, b_0_1, b_
我想知道如何获得下面的布局。 在中型和大型设备上,我希望有 2 行和 2 列的布局(2 x 2 矩阵)。 在小型(和超小型)设备上或调整为小型设备时,我想要一个 4 行和 1 列的矩阵。 我将通过 a
有什么方法可以向量化以下内容: for i = 1:6 te = k(:,:,:,i).*(c(i)); end 我正在尝试将 4D 矩阵 k 乘以向量 c,方法是将其
如何从填充有 1 和 0 的矩阵中抽取 n 个随机点的样本? a=rep(0:1,5) b=rep(0,10) c=rep(1,10) dataset=matrix(cbind(a,b,c),nrow
我正在尝试创建一个包含 X 个 X 的矩阵。以下代码生成从左上角到右下角的 X 对 Angular 线,而不是从右上角到左下角的 X 对 Angular 线。我不确定从哪里开始。是否应该使用新变量创建
我想在 python 中创建一个每行三列的矩阵,并能够通过任何一行对它们进行索引。矩阵中的每个值都是唯一的。 据我所知,我可以设置如下矩阵: matrix = [["username", "name"
我有点迷茫 我创建了一个名为 person 的类,它具有 age 和 name 属性(以及 get set 方法)。然后在另一个类中,我想创建一个 persons 数组,其中每个人都有不同的年龄和姓名
我有 n 个类,它们要么堆叠,要么不堆叠。所有这些类都扩展了同一个类 (CellObject)。我知道更多类将添加到此列表中,我想创建一种易于在一个地方操纵“可堆叠性”的方法。 我正在考虑创建一个矩阵
我有一个包含 x 个字符串名称及其关联 ID 的文件。本质上是两列数据。 我想要的是一个格式为 x x x 的相关样式表(将相关数据同时作为 x 轴和 y 轴),但我想要 fuzzywuzzy 库的函
机器学习与传统编程的一个重要区别在于机器学习比传统编程涉及了更多的数学知识。不过,随着机器学习的飞速发展,各种框架应运而生,在数据分析等应用中使用机器学习时,使用现成的库和框架成为常态,似乎越来越不需
当我在 julia 中输入这个错误跳转但我不知道为什么,它应该工作。/ julia> A = [1 2 3 4; 5 6 7 8; 1 2 3 4; 5 6 7 8] 4×4 Array{Int64,
我是一名优秀的程序员,十分优秀!