- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我在笔记本上使用opencv242 + VS2010。
我试图在 OpenCV 中对 GPU block 进行一些简单的测试,但它显示 GPU 比 CPU 代码慢 100 倍。在这段代码中,我只是将彩色图像转为灰度图像,使用 cvtColor
这是我的代码,PART1 是 CPU 代码(测试 cpu RGB2GRAY),PART2 是上传图像到 GPU,PART3 是 GPU RGB2GRAY,PART4 是 CPU RGB2GRAY。 有三件事让我很想知道:
1 在我的代码中,part1是0.3ms,而part4(和part1完全一样)是40ms!!!
2 上传图片到GPU的part2是6000ms!!!
3 Part3(GPU代码)是11ms,对于这个简单的图像来说太慢了!
#include "StdAfx.h"
#include <iostream>
#include "opencv2/opencv.hpp"
#include "opencv2/gpu/gpu.hpp"
#include "opencv2/gpu/gpumat.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <ctime>
#include <windows.h>
using namespace std;
using namespace cv;
using namespace cv::gpu;
int main()
{
LARGE_INTEGER freq;
LONGLONG QPart1,QPart6;
double dfMinus, dfFreq, dfTim;
QueryPerformanceFrequency(&freq);
dfFreq = (double)freq.QuadPart;
cout<<getCudaEnabledDeviceCount()<<endl;
Mat img_src = imread("d:\\CUDA\\train.png", 1);
// PART1 CPU code~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// From color image to grayscale image.
QueryPerformanceCounter(&freq);
QPart1 = freq.QuadPart;
Mat img_gray;
cvtColor(img_src,img_gray,CV_BGR2GRAY);
QueryPerformanceCounter(&freq);
QPart6 = freq.QuadPart;
dfMinus = (double)(QPart6 - QPart1);
dfTim = 1000 * dfMinus / dfFreq;
printf("CPU RGB2GRAY running time is %.2f ms\n\n",dfTim);
// PART2 GPU upload image~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GpuMat gimg_src;
QueryPerformanceCounter(&freq);
QPart1 = freq.QuadPart;
gimg_src.upload(img_src);
QueryPerformanceCounter(&freq);
QPart6 = freq.QuadPart;
dfMinus = (double)(QPart6 - QPart1);
dfTim = 1000 * dfMinus / dfFreq;
printf("Read image running time is %.2f ms\n\n",dfTim);
GpuMat dst1;
QueryPerformanceCounter(&freq);
QPart1 = freq.QuadPart;
/*dst.upload(src_host);*/
dst1.upload(imread("d:\\CUDA\\train.png", 1));
QueryPerformanceCounter(&freq);
QPart6 = freq.QuadPart;
dfMinus = (double)(QPart6 - QPart1);
dfTim = 1000 * dfMinus / dfFreq;
printf("Read image running time 2 is %.2f ms\n\n",dfTim);
// PART3~ GPU code~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// gpuimage From color image to grayscale image.
QueryPerformanceCounter(&freq);
QPart1 = freq.QuadPart;
GpuMat gimg_gray;
gpu::cvtColor(gimg_src,gimg_gray,CV_BGR2GRAY);
QueryPerformanceCounter(&freq);
QPart6 = freq.QuadPart;
dfMinus = (double)(QPart6 - QPart1);
dfTim = 1000 * dfMinus / dfFreq;
printf("GPU RGB2GRAY running time is %.2f ms\n\n",dfTim);
// PART4~CPU code(again)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// gpuimage From color image to grayscale image.
QueryPerformanceCounter(&freq);
QPart1 = freq.QuadPart;
Mat img_gray2;
cvtColor(img_src,img_gray2,CV_BGR2GRAY);
BOOL i_test=QueryPerformanceCounter(&freq);
printf("%d \n",i_test);
QPart6 = freq.QuadPart;
dfMinus = (double)(QPart6 - QPart1);
dfTim = 1000 * dfMinus / dfFreq;
printf("CPU RGB2GRAY running time is %.2f ms\n\n",dfTim);
cvWaitKey();
getchar();
return 0;
}
最佳答案
上面的大多数答案实际上都是错误的。它之所以慢 20.000 倍的原因当然不是因为“CPU 时钟速度更快”和“它必须将其复制到 GPU”(已接受的答案)。这些都是因素,但是说你忽略了一个事实,即你有更多的计算能力来解决一个令人作呕的并行问题。说 20.000 倍的性能差异是因为后者实在是太荒谬了。这里的作者知道出了点问题,这不是直截了当的。解决方案:
你的问题是 CUDA 需要初始化!它总是会初始化第一张图像,一般需要 1-10 秒,具体取决于木星和火星的对齐方式。现在试试这个。计算两次,然后对它们进行计时。在这种情况下,您可能会看到速度在同一数量级内,而不是 20.000 倍,这太荒谬了。你能对这个初始化做点什么吗?不,不是我所知道的。这是一个障碍。
编辑:我刚刚重新阅读了这篇文章。你说你在笔记本上运行。那些通常有破旧的 GPU,而 CPU 的速度还不错。
关于c++ - 为什么 Opencv GPU 代码比 CPU 慢?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/12074281/
谁能解释或指出在多 GPU/多显示器设置中渲染如何工作的解释(或至少一些线索)? 例如,我安装了 5 个 NVIDIA Quadro 4000 视频卡并连接了 9 个显示器。显示不进行任何分组。刚刚在
以下代码报错: import spacy spacy.require_gpu() Traceback (most recent call last): File "/home/user/Pycha
正如问题已经暗示的那样,我是深度学习的新手。我知道模型的学习过程在没有 GPU 的情况下会很慢。如果我愿意等待,如果我只使用CPU可以吗? 最佳答案 在计算深度学习(以及一般的神经网络)中执行的许多操
我知道 Renderscript 的设计是为了掩盖我正在运行的处理器的事实,但是有没有办法编写代码,以便在支持 GPU 计算的设备(目前是 Nexus 10)上运行显卡?有什么方法可以判断脚本的功能正
关闭。这个问题是opinion-based 。目前不接受答案。 想要改进这个问题吗?更新问题,以便 editing this post 可以用事实和引文来回答它。 . 已关闭 8 年前。 Improv
我想以编程方式找出可用的 GPU 及其当前内存使用情况,并根据内存可用性使用其中一个 GPU。我想在 PyTorch 中执行此操作。 我在这个 post 中看到了以下解决方案: import torc
我喜欢 GPU Gems 的结构化技术摘要。但是自上次发布以来已经过去了很长时间,应该开发新算法来处理新型硬件。 我可以阅读有关最近 GPU 技术成就的哪些信息? 潜伏在编程板上是唯一的方法吗? 最佳
我一直在做一些关于测量数据传输延迟的实验 CPU->GPU 和 GPU->CPU。我发现对于特定消息大小,CPU->GPU 数据传输速率几乎是 GPU->CPU 传输速率的两倍。谁能解释我为什么会这样
当我使用选项 --gres=gpu:1 向具有两个 GPU 的节点提交 SLURM 作业时,如何获取为该作业分配的 GPU ID?是否有用于此目的的环境变量?我使用的 GPU 都是 nvidia GP
我用 gpu、cuda 7.0 和 cudnn 6.5 安装了 tensorflow。当我导入 tensorflow 时,它运行良好。 我正在尝试在 Tensorflow 上运行一个简单的矩阵乘法,但
我们正在寻找有关 slurm salloc gpu 分配的一些建议。目前,给定: % salloc -n 4 -c 2 -gres=gpu:1 % srun env | grep CUDA CUD
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我是否必须自定义为非 GPU Tensorflow 库编写的代码以适应tensorflow-gpu 库? 我有一个 GPU,想运行仅为非 GPU tensorflow 库编写的 Python 代码。我
我正在使用 pytorch 框架训练网络。我的电脑里有 K40 GPU。上周,我在同一台计算机上添加了 1080。 在我的第一个实验中,我在两个 GPU 上观察到相同的结果。然后,我在两个 GPU 上
有没有办法在 Slurm 上超额订阅 GPU,即运行共享一个 GPU 的多个作业/作业步骤?我们只找到了超额订阅 CPU 和内存的方法,但没有找到 GPU。 我们希望在同一 GPU 上并行运行多个作业
我可以访问 4 个 GPU(不是 root 用户)。其中一个 GPU(2 号)表现怪异,它们的一些内存被阻塞但功耗和温度非常低(好像没有任何东西在上面运行)。请参阅下图中 nvidia-smi 的详细
我正在尝试通过 Tensorflow 运行示例 seq2seq,但它不会使用 GPU。以下是我在带有 Tesla K20x 的 Linux 系统上安装 Tensorflow 所采取的步骤 git cl
一位电气工程师最近提醒我不要使用 GPU 进行科学计算(例如,在精度非常重要的地方),因为没有像 CPU 那样的硬件保护措施。这是真的吗?如果是的话,典型硬件中的问题有多普遍/严重? 最佳答案 实际上
关闭。这个问题不满足Stack Overflow guidelines .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 7年前关闭。 Improve thi
最近我研究了强化学习,有一个问题困扰着我,我找不到答案:如何使用 GPU 有效地完成训练?据我所知,需要与环境持续交互,这对我来说似乎是一个巨大的瓶颈,因为这项任务通常是非数学的/不可并行化的。然而,
我是一名优秀的程序员,十分优秀!