gpt4 book ai didi

c++ - C++ 03中最接近浮点值的整数

转载 作者:IT老高 更新时间:2023-10-28 23:02:33 34 4
gpt4 key购买 nike

对于某些整数类型,即使浮点值远远超出整数的可表示范围,我如何才能找到最接近浮点类型的某个值的值。

或者更准确地说:

F是浮点类型(可能是 floatdoublelong double )。让 I是整数类型。

假设FI具有 std::numeric_limits<> 的有效特化.

给定一个可表示的值 F ,并且仅使用 C++03,我怎样才能找到最接近的可表示值 I ?

我追求的是一种纯粹、高效且线程安全的解决方案,并且除了 C++03 的保证之外,它对平台没有任何假设。

如果不存在这样的解决方案,是否可以使用C99/C++11的新特性找到一个?

使用 lround()由于报告域错误的非平凡方式,C99 似乎存在问题。能否以可移植和线程安全的方式捕获这些域错误?

注意:我知道 Boost 可能通过它的 boost::numerics::converter<> 提供了一个解决方案。模板,但由于其高度复杂性和冗长,我无法从中提取要领,因此我无法检查他们的解决方案是否做出了超出 C++03 的假设。

由于 I(f) 的结果,以下天真的方法失败了。当 f 的整数部分时,C++03 未定义不是 I 的可表示值.

template<class I, class F> I closest_int(F f)
{
return I(f);
}

然后考虑以下方法:

template<class I, class F> I closest_int(F f)
{
if (f < std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
if (std::numeric_limits<I>::max() < f) return std::numeric_limits<I>::max();
return I(f);
}

这也失败了,因为 F(std::numeric_limits<I>::min()) 的组成部分和 F(std::numeric_limits<I>::max())可能仍无法在 I 中表示.

最后考虑一下同样失败的第三种方法:

template<class I, class F> I closest_int(F f)
{
if (f <= std::numeric_limits<I>::min()) return std::numeric_limits<I>::min();
if (std::numeric_limits<I>::max() <= f) return std::numeric_limits<I>::max();
return I(f);
}

这次I(f)然而,总是会有一个明确的结果,因为 F(std::numeric_limits<I>::max())可能远小于 std::numeric_limits<I>::max() , 有可能我们会返回 std::numeric_limits<I>::max()对于低于 std::numeric_limits<I>::max() 的多个整数值的浮点值.

请注意,所有的麻烦都是因为不确定是否转换 F(i)向上或向下舍入到最接近的可表示浮点值。

这是来自 C++03(4.9 浮点积分转换)的相关部分:

An rvalue of an integer type or of an enumeration type can be converted to an rvalue of a floating point type. The result is exact if possible. Otherwise, it is an implementation-defined choice of either the next lower or higher representable value.

最佳答案

对于 radix-2(二进制)浮点类型和大于等于 64 位的整数类型,我有一个实用的解决方案。见下文。评论应该清楚。输出如下。

// file: f2i.cpp
//
// compiled with MinGW x86 (gcc version 4.6.2) as:
// g++ -Wall -O2 -std=c++03 f2i.cpp -o f2i.exe
#include <iostream>
#include <iomanip>
#include <limits>

using namespace std;

template<class I, class F> I truncAndCap(F f)
{
/*
This function converts (by truncating the
fractional part) the floating-point value f (of type F)
into an integer value (of type I), avoiding undefined
behavior by returning std::numeric_limits<I>::min() and
std::numeric_limits<I>::max() when f is too small or
too big to be converted to type I directly.

2 problems:
- F may fail to convert to I,
which is undefined behavior and we want to avoid that.
- I may not convert exactly into F
- Direct I & F comparison fails because of I to F promotion,
which can be inexact.

This solution is for the most practical case when I and F
are radix-2 (binary) integer and floating-point types.
*/
int Idigits = numeric_limits<I>::digits;
int Isigned = numeric_limits<I>::is_signed;

/*
Calculate cutOffMax = 2 ^ std::numeric_limits<I>::digits
(where ^ denotes exponentiation) as a value of type F.

We assume that F is a radix-2 (binary) floating-point type AND
it has a big enough exponent part to hold the value of
std::numeric_limits<I>::digits.

FLT_MAX_10_EXP/DBL_MAX_10_EXP/LDBL_MAX_10_EXP >= 37
(guaranteed per C++ standard from 2003/C standard from 1999)
corresponds to log2(1e37) ~= 122, so the type I can contain
up to 122 bits. In practice, integers longer than 64 bits
are extremely rare (if existent at all), especially on old systems
of the 2003 C++ standard's time.
*/
const F cutOffMax = F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2));

if (f >= cutOffMax)
return numeric_limits<I>::max();

/*
Calculate cutOffMin = - 2 ^ std::numeric_limits<I>::digits
(where ^ denotes exponentiation) as a value of type F for
signed I's OR cutOffMin = 0 for unsigned I's in a similar fashion.
*/
const F cutOffMin = Isigned ? -F(I(1) << Idigits / 2) * F(I(1) << (Idigits / 2 + Idigits % 2)) : 0;

if (f <= cutOffMin)
return numeric_limits<I>::min();

/*
Mathematically, we may still have a little problem (2 cases):
cutOffMin < f < std::numeric_limits<I>::min()
srd::numeric_limits<I>::max() < f < cutOffMax

These cases are only possible when f isn't a whole number, when
it's either std::numeric_limits<I>::min() - value in the range (0,1)
or std::numeric_limits<I>::max() + value in the range (0,1).

We can ignore this altogether because converting f to type I is
guaranteed to truncate the fractional part off, and therefore
I(f) will always be in the range
[std::numeric_limits<I>::min(), std::numeric_limits<I>::max()].
*/

return I(f);
}

template<class I, class F> void test(const char* msg, F f)
{
I i = truncAndCap<I,F>(f);
cout <<
msg <<
setiosflags(ios_base::showpos) <<
setw(14) << setprecision(12) <<
f << " -> " <<
i <<
resetiosflags(ios_base::showpos) <<
endl;
}

#define TEST(I,F,VAL) \
test<I,F>(#F " -> " #I ": ", VAL);

int main()
{
TEST(short, float, -1.75f);
TEST(short, float, -1.25f);
TEST(short, float, +0.00f);
TEST(short, float, +1.25f);
TEST(short, float, +1.75f);

TEST(short, float, -32769.00f);
TEST(short, float, -32768.50f);
TEST(short, float, -32768.00f);
TEST(short, float, -32767.75f);
TEST(short, float, -32767.25f);
TEST(short, float, -32767.00f);
TEST(short, float, -32766.00f);
TEST(short, float, +32766.00f);
TEST(short, float, +32767.00f);
TEST(short, float, +32767.25f);
TEST(short, float, +32767.75f);
TEST(short, float, +32768.00f);
TEST(short, float, +32768.50f);
TEST(short, float, +32769.00f);

TEST(int, float, -2147483904.00f);
TEST(int, float, -2147483648.00f);
TEST(int, float, -16777218.00f);
TEST(int, float, -16777216.00f);
TEST(int, float, -16777215.00f);
TEST(int, float, +16777215.00f);
TEST(int, float, +16777216.00f);
TEST(int, float, +16777218.00f);
TEST(int, float, +2147483648.00f);
TEST(int, float, +2147483904.00f);

TEST(int, double, -2147483649.00);
TEST(int, double, -2147483648.00);
TEST(int, double, -2147483647.75);
TEST(int, double, -2147483647.25);
TEST(int, double, -2147483647.00);
TEST(int, double, +2147483647.00);
TEST(int, double, +2147483647.25);
TEST(int, double, +2147483647.75);
TEST(int, double, +2147483648.00);
TEST(int, double, +2147483649.00);

TEST(unsigned, double, -1.00);
TEST(unsigned, double, +1.00);
TEST(unsigned, double, +4294967295.00);
TEST(unsigned, double, +4294967295.25);
TEST(unsigned, double, +4294967295.75);
TEST(unsigned, double, +4294967296.00);
TEST(unsigned, double, +4294967297.00);

return 0;
}

输出(ideone 打印与我的 PC 相同):

float -> short:          -1.75 -> -1
float -> short: -1.25 -> -1
float -> short: +0 -> +0
float -> short: +1.25 -> +1
float -> short: +1.75 -> +1
float -> short: -32769 -> -32768
float -> short: -32768.5 -> -32768
float -> short: -32768 -> -32768
float -> short: -32767.75 -> -32767
float -> short: -32767.25 -> -32767
float -> short: -32767 -> -32767
float -> short: -32766 -> -32766
float -> short: +32766 -> +32766
float -> short: +32767 -> +32767
float -> short: +32767.25 -> +32767
float -> short: +32767.75 -> +32767
float -> short: +32768 -> +32767
float -> short: +32768.5 -> +32767
float -> short: +32769 -> +32767
float -> int: -2147483904 -> -2147483648
float -> int: -2147483648 -> -2147483648
float -> int: -16777218 -> -16777218
float -> int: -16777216 -> -16777216
float -> int: -16777215 -> -16777215
float -> int: +16777215 -> +16777215
float -> int: +16777216 -> +16777216
float -> int: +16777218 -> +16777218
float -> int: +2147483648 -> +2147483647
float -> int: +2147483904 -> +2147483647
double -> int: -2147483649 -> -2147483648
double -> int: -2147483648 -> -2147483648
double -> int: -2147483647.75 -> -2147483647
double -> int: -2147483647.25 -> -2147483647
double -> int: -2147483647 -> -2147483647
double -> int: +2147483647 -> +2147483647
double -> int: +2147483647.25 -> +2147483647
double -> int: +2147483647.75 -> +2147483647
double -> int: +2147483648 -> +2147483647
double -> int: +2147483649 -> +2147483647
double -> unsigned: -1 -> 0
double -> unsigned: +1 -> 1
double -> unsigned: +4294967295 -> 4294967295
double -> unsigned: +4294967295.25 -> 4294967295
double -> unsigned: +4294967295.75 -> 4294967295
double -> unsigned: +4294967296 -> 4294967295
double -> unsigned: +4294967297 -> 4294967295

关于c++ - C++ 03中最接近浮点值的整数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/12609539/

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com