- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我知道这是一个反复出现的问题,但我还没有真正找到有用的答案。我基本上是在寻找 C++ 中函数 acos
的快速近似值,我想知道我是否可以显着击败标准函数。
但是你们中的一些人可能对我的具体问题有见解:我正在编写一个科学程序,我需要非常快。主要算法的复杂性归结为计算以下表达式(多次使用不同的参数):
sin( acos(t_1) + acos(t_2) + ... + acos(t_n) )
其中 t_i
是已知的实数( double ),而 n
非常小(例如小于 6)。我需要至少 1e-10 的精度。我目前正在使用标准的 sin
和 acos
C++ 函数。
你认为我能以某种方式显着提高速度吗?对于那些知道一些数学的人,你认为扩展该正弦以获得根据 t_i
的代数表达式(仅涉及平方根)是否明智?
感谢您的回答。
最佳答案
下面的代码提供了 sin()
和 acos()
的简单实现,它们应该满足您的准确性要求并且您可能想尝试一下。请注意,您平台上的数学库实现很可能针对该平台的特定硬件功能进行了高度调整,并且可能还以汇编形式编码以获得最大效率,因此不太可能提供不满足硬件细节的简单编译 C 代码更高的性能,即使精度要求从全 double 有所放宽。正如 Viktor Latypov 指出的那样,寻找不需要昂贵调用超越数学函数的算法替代方案也可能是值得的。
在下面的代码中,我尝试使用简单、可移植的结构。如果您的编译器支持 rint()
函数 [由 C99 和 C++11 指定],您可能希望使用它而不是 my_rint()
。在某些平台上,对 floor()
的调用可能很昂贵,因为它需要动态更改机器状态。函数 my_rint()
、sin_core()
、cos_core()
和 asin_core()
想要成为内联以获得最佳性能。您的编译器可能会在高优化级别自动执行此操作(例如,使用 -O3
编译时),或者您可以为这些函数添加适当的内联属性,例如inline 或 __inline 取决于您的工具链。
对您的平台一无所知,我选择了简单的多项式近似,使用 Estrin 方案和 Horner 方案进行评估。有关这些评估方案的描述,请参见 Wikipedia:
http://en.wikipedia.org/wiki/Estrin%27s_scheme , http://en.wikipedia.org/wiki/Horner_scheme
近似值本身属于极大极小值类型,并且是使用 Remez 算法为此答案自定义生成的:
http://en.wikipedia.org/wiki/Minimax_approximation_algorithm , http://en.wikipedia.org/wiki/Remez_algorithm
acos()
的参数缩减中使用的标识在注释中注明,对于 sin()
我使用了 Cody/Waite 风格的参数缩减,如如下书中所述:
W。 J. Cody, W. Waite,基本功能软件手册。普伦蒂斯·霍尔,1980 年
评论中提到的误差范围是近似值,未经严格测试或证明。
/* not quite rint(), i.e. results not properly rounded to nearest-or-even */
double my_rint (double x)
{
double t = floor (fabs(x) + 0.5);
return (x < 0.0) ? -t : t;
}
/* minimax approximation to cos on [-pi/4, pi/4] with rel. err. ~= 7.5e-13 */
double cos_core (double x)
{
double x8, x4, x2;
x2 = x * x;
x4 = x2 * x2;
x8 = x4 * x4;
/* evaluate polynomial using Estrin's scheme */
return (-2.7236370439787708e-7 * x2 + 2.4799852696610628e-5) * x8 +
(-1.3888885054799695e-3 * x2 + 4.1666666636943683e-2) * x4 +
(-4.9999999999963024e-1 * x2 + 1.0000000000000000e+0);
}
/* minimax approximation to sin on [-pi/4, pi/4] with rel. err. ~= 5.5e-12 */
double sin_core (double x)
{
double x4, x2, t;
x2 = x * x;
x4 = x2 * x2;
/* evaluate polynomial using a mix of Estrin's and Horner's scheme */
return ((2.7181216275479732e-6 * x2 - 1.9839312269456257e-4) * x4 +
(8.3333293048425631e-3 * x2 - 1.6666666640797048e-1)) * x2 * x + x;
}
/* minimax approximation to arcsin on [0, 0.5625] with rel. err. ~= 1.5e-11 */
double asin_core (double x)
{
double x8, x4, x2;
x2 = x * x;
x4 = x2 * x2;
x8 = x4 * x4;
/* evaluate polynomial using a mix of Estrin's and Horner's scheme */
return (((4.5334220547132049e-2 * x2 - 1.1226216762576600e-2) * x4 +
(2.6334281471361822e-2 * x2 + 2.0596336163223834e-2)) * x8 +
(3.0582043602875735e-2 * x2 + 4.4630538556294605e-2) * x4 +
(7.5000364034134126e-2 * x2 + 1.6666666300567365e-1)) * x2 * x + x;
}
/* relative error < 7e-12 on [-50000, 50000] */
double my_sin (double x)
{
double q, t;
int quadrant;
/* Cody-Waite style argument reduction */
q = my_rint (x * 6.3661977236758138e-1);
quadrant = (int)q;
t = x - q * 1.5707963267923333e+00;
t = t - q * 2.5633441515945189e-12;
if (quadrant & 1) {
t = cos_core(t);
} else {
t = sin_core(t);
}
return (quadrant & 2) ? -t : t;
}
/* relative error < 2e-11 on [-1, 1] */
double my_acos (double x)
{
double xa, t;
xa = fabs (x);
/* arcsin(x) = pi/2 - 2 * arcsin (sqrt ((1-x) / 2))
* arccos(x) = pi/2 - arcsin(x)
* arccos(x) = 2 * arcsin (sqrt ((1-x) / 2))
*/
if (xa > 0.5625) {
t = 2.0 * asin_core (sqrt (0.5 * (1.0 - xa)));
} else {
t = 1.5707963267948966 - asin_core (xa);
}
/* arccos (-x) = pi - arccos(x) */
return (x < 0.0) ? (3.1415926535897932 - t) : t;
}
关于C++(和数学): fast approximation of a trigonometric function,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/11261170/
main.cpp #include "Primes.h" #include int main(){ std::string choose; int num1, num2; w
似乎函数 qwertyInches() 应该可以工作但是当我在 main() 中调用它时它给了我 [Error] called object 'qwertyInches' is not a funct
我无法理解 C++ 语法的工作原理。 #include using namespace std; class Accumulator{ private: int value; public:
在 类中声明 函数成员时,我们可以同时执行这两种操作; Function first; Function() second; 它们之间有什么区别? 最佳答案 Function 代表任意函数: void
“colonna”怎么可能是一个简单的字符串: $('td.' + colonna).css('background-color','#ffddaa'); 可以正确突出显示有趣单元格的背景,并且: $
我正在尝试将网页中的动态参数中继到函数中,然后函数将它们传递给函数内部的调用。比如下面这个简化的代码片段,现在这样,直接传入参数是没有问题的。但是,如何在不为每个可能的 colorbox 参数设置 s
C++ 中是否有一种模式允许您返回一个函数,它返回一个函数本身。例如 std::function func = ...; do { func = func(); } while (func);
我正在将 Windows 程序集移植到 Linux。我有一些代码要移植。我实际上是 linux 中 C 的新手。我知道 C 基础知识是一样的! typedef struct sReader {
我一直在寻找一个很好的解释,所以我很清楚。示例: this.onDeleteHandler(index)}/> 对比 对比 this.nameChangedhandler(event, perso
function(){}.__proto__ === Function.prototype 和 Function.prototype === function(){}.__proto__ 得到不同的结
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function 据说 Propert
VBA 中的函数没有特殊类型。我很难理解如何在 Excel VBA 中将函数作为参数添加到函数中。 我想要完成的是这样的事情: function f(g as function, x as strin
所以我正在尝试制作一个包(我没有在下面包含我的 roxygen2 header ): 我有这个功能: date_from_text % dplyr::mutate(!!name := lubr
尝试从 std::function 派生一个类,对于初学者来说,继承构造函数。这是我的猜测: #include #include using namespace std; template cla
我正在尝试编写一个返回另一个函数的函数。我的目标是编写一个函数,它接受一个对象并返回另一个函数“search”。当我使用键调用搜索函数时,我想从第一个函数中给定的对象返回该键的值。 propertyO
我非常清楚函数式编程技术和命令式编程技术之间的区别。但是现在有一种普遍的趋势是谈论“函数式语言”,这确实让我感到困惑。 当然,像 Haskell 这样的一些语言比 C 等其他语言更欢迎函数式编程。但即
关闭。这个问题是opinion-based 。目前不接受答案。 想要改进这个问题吗?更新问题,以便 editing this post 可以用事实和引文来回答它。 . 已关闭 8 年前。 Improv
我在stackoverflow上查过很多类似的问题,比如call.call 1 , call.call 2 ,但我是新人,无法发表任何评论。我希望我能找到关于 JavaScript 解释器如何执行这些
向 Twilio 发送 SMS 时,Twilio 会向指定的 URL 发送多个请求,以通过 Webhook 提供该 SMS 传送的状态。我想让这个回调异步,所以我开发了一个 Cloud Functio
作为 IaC 的一部分,A 功能应用 ,让我们将其命名为 FuncAppX 是使用 Terraform 部署的,它有一个内置函数。 我需要使用 Terraform 在函数应用程序中访问相同函数的 Ur
我是一名优秀的程序员,十分优秀!