gpt4 book ai didi

python - np.random.rand 与 np.random.random

转载 作者:IT老高 更新时间:2023-10-28 22:22:49 33 4
gpt4 key购买 nike

我发现 Python(及其生态系统)充满了奇怪的约定和不一致,这是另一个例子:

np.random.rand

Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1).

np.random.random

Return random floats in the half-open interval [0.0, 1.0). Results are from the “continuous uniform” distribution over the stated interval.

???到底有什么区别?

最佳答案

首先注意 numpy.random.random 实际上是 numpy.random.random_sample 的别名.我将在下面使用后者。 (更多别名参见 this question and answer。)

这两个函数都从 uniform distribution 生成样本在 [0, 1) 上。唯一的区别在于如何处理参数。与 numpy.random.rand ,输出数组的每个维度的长度是一个单独的参数。使用 numpy.random.random_sample,shape 参数是单个元组。

例如,要创建一个形状为 (3, 5) 的样本数组,您可以这样写

sample = np.random.rand(3, 5)

sample = np.random.random_sample((3, 5))

(真的,就是这样。)


更新

从 1.17 版开始,NumPy 有一个新的 random API .从 [0, 1) 上的均匀分布生成样本的推荐方法是:

>>> rng = np.random.default_rng()  # Create a default Generator.
>>> rng.random(size=10) # Generate 10 samples.
array([0.00416913, 0.31533329, 0.19057857, 0.48732511, 0.40638395,
0.32165646, 0.02597142, 0.19788567, 0.08142055, 0.15755424])

新的Generator类没有 rand()random_sample() 方法。 一个 uniform() 方法,允许您指定分布的下限和上限。例如

>>> rng.uniform(1, 2, size=10)
array([1.75573298, 1.79862591, 1.53700962, 1.29183769, 1.16439681,
1.64413869, 1.7675135 , 1.02121057, 1.37345967, 1.73589452])

numpy.random 命名空间中的旧函数将继续工作,但它们被视为“卡住”,没有持续开发。如果您正在编写新代码,并且您不必支持 numpy 1.17 之前的版本,建议您使用新的随机 API。

关于python - np.random.rand 与 np.random.random,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/47231852/

33 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com