- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我现在正在使用 scipy.integrate.quad 来成功集成一些真正的被积函数。现在出现了一种情况,我需要整合一个复杂的被积函数。与其他 scipy.integrate 例程一样,quad 似乎无法做到这一点,所以我问:有没有办法使用 scipy.integrate 积分一个复杂的被积函数,而不必分离实部和虚部的积分?
最佳答案
把它分成实部和虚部有什么问题? scipy.integrate.quad
需要集成函数返回 float (也称为实数)以用于它使用的算法。
import scipy
from scipy.integrate import quad
def complex_quadrature(func, a, b, **kwargs):
def real_func(x):
return scipy.real(func(x))
def imag_func(x):
return scipy.imag(func(x))
real_integral = quad(real_func, a, b, **kwargs)
imag_integral = quad(imag_func, a, b, **kwargs)
return (real_integral[0] + 1j*imag_integral[0], real_integral[1:], imag_integral[1:])
例如,
>>> complex_quadrature(lambda x: (scipy.exp(1j*x)), 0,scipy.pi/2)
((0.99999999999999989+0.99999999999999989j),
(1.1102230246251564e-14,),
(1.1102230246251564e-14,))
这是您期望的舍入误差 - exp(i x) 从 0 到 pi/2 的积分是 (1/i)(e^i pi/2 - e^0) = -i(i - 1) = 1 + i ~ (0.99999999999999989+0.99999999999999989j)。
为了防止每个人都 100% 清楚,积分是线性泛函,这意味着 ∫ { f(x) + k g(x) } dx = ∫ f(x) dx + k ∫ g(x) dx(其中 k 是关于 x 的常数)。或者对于我们的具体情况 ∫ z(x) dx = ∫ Re z(x) dx + i ∫ Im z(x) dx as z(x) = Re z(x) + i Im z(x)。
如果您尝试对复平面中的路径(而不是沿实轴)或复平面中的区域进行积分,则需要更复杂的算法。
注意:Scipy.integrate 不会直接处理复杂的集成。为什么?它在 FORTRAN QUADPACK 中完成了繁重的工作库,特别是在 qagse.f在执行“基于每个子区间内的 21 点 Gauss-Kronrod 求积的全局自适应求积,通过 Peter Wynn 的 epsilon 算法进行加速”之前,明确要求函数/变量是实数。因此,除非您想尝试修改底层 FORTRAN 以使其处理复数,将其编译到新库中,否则您将无法使其正常工作。
如果您真的想在一个积分中使用复数执行 Gauss-Kronrod 方法,请查看 wikipedias page并按照下面的方式直接实现(使用 15-pt、7-pt 规则)。注意,我记住了函数来重复对公共(public)变量的常用调用(假设函数调用很慢,好像函数非常复杂)。也只做了 7-pt 和 15-pt 规则,因为我不想自己计算节点/权重,而那些是维基百科上列出的,但在测试用例中得到了合理的错误 (~1e-14)
import scipy
from scipy import array
def quad_routine(func, a, b, x_list, w_list):
c_1 = (b-a)/2.0
c_2 = (b+a)/2.0
eval_points = map(lambda x: c_1*x+c_2, x_list)
func_evals = map(func, eval_points)
return c_1 * sum(array(func_evals) * array(w_list))
def quad_gauss_7(func, a, b):
x_gauss = [-0.949107912342759, -0.741531185599394, -0.405845151377397, 0, 0.405845151377397, 0.741531185599394, 0.949107912342759]
w_gauss = array([0.129484966168870, 0.279705391489277, 0.381830050505119, 0.417959183673469, 0.381830050505119, 0.279705391489277,0.129484966168870])
return quad_routine(func,a,b,x_gauss, w_gauss)
def quad_kronrod_15(func, a, b):
x_kr = [-0.991455371120813,-0.949107912342759, -0.864864423359769, -0.741531185599394, -0.586087235467691,-0.405845151377397, -0.207784955007898, 0.0, 0.207784955007898,0.405845151377397, 0.586087235467691, 0.741531185599394, 0.864864423359769, 0.949107912342759, 0.991455371120813]
w_kr = [0.022935322010529, 0.063092092629979, 0.104790010322250, 0.140653259715525, 0.169004726639267, 0.190350578064785, 0.204432940075298, 0.209482141084728, 0.204432940075298, 0.190350578064785, 0.169004726639267, 0.140653259715525, 0.104790010322250, 0.063092092629979, 0.022935322010529]
return quad_routine(func,a,b,x_kr, w_kr)
class Memoize(object):
def __init__(self, func):
self.func = func
self.eval_points = {}
def __call__(self, *args):
if args not in self.eval_points:
self.eval_points[args] = self.func(*args)
return self.eval_points[args]
def quad(func,a,b):
''' Output is the 15 point estimate; and the estimated error '''
func = Memoize(func) # Memoize function to skip repeated function calls.
g7 = quad_gauss_7(func,a,b)
k15 = quad_kronrod_15(func,a,b)
# I don't have much faith in this error estimate taken from wikipedia
# without incorporating how it should scale with changing limits
return [k15, (200*scipy.absolute(g7-k15))**1.5]
测试用例:
>>> quad(lambda x: scipy.exp(1j*x), 0,scipy.pi/2.0)
[(0.99999999999999711+0.99999999999999689j), 9.6120083407040365e-19]
我不相信误差估计值——当从 [-1 到 1] 积分时,我从 wiki 获取了一些推荐的误差估计值,而这些值对我来说似乎不合理。例如,上面与事实相比的错误是 ~5e-15 而不是 ~1e-19。我敢肯定,如果有人咨询过 num 食谱,您可以获得更准确的估计。 (可能必须通过 (a-b)/2
倍增到某种权力或类似的东西)。
回想一下,python 版本的准确度低于仅调用 scipy 的基于 QUADPACK 的集成两次。 (如果需要,您可以对其进行改进)。
关于python - 使用 scipy.integrate.quad 积分复数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/5965583/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!