- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
lstsq
尝试解决 Ax=b
最小化 |b - Ax|
。 scipy 和 numpy 都提供了一个具有非常相似接口(interface)的 linalg.lstsq
函数。文档没有提到使用哪种算法,scipy.linalg.lstsq 也没有。也不为numpy.linalg.lstsq ,但它似乎做的几乎一样。
scipy.linalg.lstsq 的实现似乎有所不同和 numpy.linalg.lstsq .两者似乎都使用 LAPACK,两种算法似乎都使用 SVD。
区别在哪里?我应该使用哪一个?
注意:不要将 linalg.lstsq
与同样可以解决非线性优化问题的 scipy.optimize.leastsq
混淆。
最佳答案
如果我正确阅读了源代码(Numpy 1.8.2,Scipy 0.14.1), numpy.linalg.lstsq()
使用 LAPACK 例程 xGELSD
和 scipy.linalg.lstsq()
使用 xGELSS
.
The subroutine xGELSD is significantly faster than its older counterpart xGELSS, especially for large problems, but may require somewhat more workspace depending on the matrix dimensions.
这意味着 Numpy 速度更快但使用更多内存。
2017 年 8 月更新:
Scipy 现在默认使用 xGELSD https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.lstsq.html
关于python - numpy.linalg.lstsq 和 scipy.linalg.lstsq 有什么区别?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29372559/
Scipy 和 Numpy 在它们之间具有三个不同的函数来查找给定方阵的特征向量,它们是: numpy.linalg.eig(a) scipy.linalg.eig(a) , 和 scipy.spar
这是我的 numpy 数组: z [[ 3.90311860e-322 1.83939721e-001] [ 0.00000000e+000 1.83939721e-001] [ 0
公认的智慧是更喜欢 scipy.linalg 而不是 numpy.linalg 函数。为了进行线性代数,理想情况下(并且方便地)我想结合 numpy.array 和 scipy.linalg 的功能,
有人知道什么时候最好选择哪个吗?在我看来,它们是一样的... lsmr lsqr 最佳答案 两种软件包的功能相同。 LSMR基于2010年的Fong&Saunders算法(请参阅paper),并且最近
如果我们想通过使用正规方程来搜索线性回归模型的最佳参数 theta: theta = inv(X^T * X) * X^T * y 第一步是计算 inv(X^T*X)。因此 numpy 提供 np.l
要求解线性矩阵方程,可以使用 numpy.linalg.solve它实现了 LAPACK 例程 *gesv . 根据文档 DGESV computes the solution to a real s
问题描述 对于方阵,可以得到SVD X= USV' 分解,通过简单地使用 numpy.linalg.svd u,s,vh = numpy.linalg.svd(X) 例程或 numpy.lin
有没有办法提高numpy.linalg.eig()和scipy.linalg.eig()的输出精度? 我正在对角化一个非对称矩阵,但我希望在物理基础上得到正负特征值对的实谱。事实上,特征值确实成对出现
lstsq 尝试解决 Ax=b 最小化 |b - Ax|。 scipy 和 numpy 都提供了一个具有非常相似接口(interface)的 linalg.lstsq 函数。文档没有提到使用哪种算法,
如果我有一个由五个向量 v1...v5 组成的向量空间,则找到 A 的正交基,其中 A=[v1,v2...v5] 且 A 为 5Xn 我应该使用np.linalg.qr(A)还是scipy.linal
我必须求解 x 的大量“Ax=B”类型的线性矩阵方程,其中 A 是一个稀疏矩阵,主要填充主对角线,B 是一个向量。 我的第一种方法是通过 numpy.linalg.solve 使用密集的 numpy
我不太明白为什么 numpy.linalg.solve() 给出了更准确的答案,而 numpy.linalg.inv() 有点崩溃,给出 (我相信是)估计。 举一个具体的例子,我正在求解方程 C^{-
我有一个奇怪的现象,虽然 scipy.sparse.linalg.eigs 对于稀疏矩阵应该更快,但我知道它运行得比正常的 eigvals 方法慢scipy: In [4]: %timeit m.ca
我正在使用 Spark cluster 2.0,我想从 org.apache.spark.mllib.linalg.VectorUDT 转换一个向量至org.apache.spark.ml.linal
我有下面的代码,我使用命令 scipy.linalg.lu() 计算给定方阵的 L 矩阵,然后我再次执行相同的操作,除了然后应用于给定矩阵的稀疏形式使用 scipy.sparse.linalg.slu
我在学习SVD通过关注这个 MIT course . 矩阵构造为 C = np.matrix([[5,5],[-1,7]]) C matrix([[ 5, 5], [-1, 7]]
如何从org.apache.spark.mllib.linalg.SparseVector至org.apache.spark.ml.linalg.SparseVector ? 我正在从 mllib 转
有人可以帮我解决以下错误吗?我正在尝试将数据帧转换为 rdd,以便它可以用于回归模型构建。 Spark 版本:2.0.0 错误 => ClassCastException: org.apache.sp
我正在尝试在 Python 上实现最小二乘曲线拟合算法,我已经在 Matlab 上编写了它。但是,我无法获得正确的变换矩阵,而且问题似乎发生在求解步骤。 (编辑:我的变换矩阵在 Matlab 中非常准
前言 numpy.linalg模块包含线性代数的函数。使用这个模块,可以计算逆矩阵、求特征值、解线性方程组以及求解行列式等。本文讲给大家介绍关于numpy基础之 np.linalg的相关内容,下面
我是一名优秀的程序员,十分优秀!