gpt4 book ai didi

维特比算法的 Python 实现

转载 作者:IT老高 更新时间:2023-10-28 22:14:36 25 4
gpt4 key购买 nike

我正在做一个 Python 项目,我想在其中使用 Viterbi 算法。有人知道维特比算法的完整 Python 实现吗?维基百科上的正确性似乎在讨论页上存在问题。有没有人指点一下?

最佳答案

这是我的。它直接来自psuedocode implemenation from wikipedia .它使用 numpy 来表达他们的 ndarray 但在其他方面是纯 python3 实现。

import numpy as np

def viterbi(y, A, B, Pi=None):
"""
Return the MAP estimate of state trajectory of Hidden Markov Model.

Parameters
----------
y : array (T,)
Observation state sequence. int dtype.
A : array (K, K)
State transition matrix. See HiddenMarkovModel.state_transition for
details.
B : array (K, M)
Emission matrix. See HiddenMarkovModel.emission for details.
Pi: optional, (K,)
Initial state probabilities: Pi[i] is the probability x[0] == i. If
None, uniform initial distribution is assumed (Pi[:] == 1/K).

Returns
-------
x : array (T,)
Maximum a posteriori probability estimate of hidden state trajectory,
conditioned on observation sequence y under the model parameters A, B,
Pi.
T1: array (K, T)
the probability of the most likely path so far
T2: array (K, T)
the x_j-1 of the most likely path so far
"""
# Cardinality of the state space
K = A.shape[0]
# Initialize the priors with default (uniform dist) if not given by caller
Pi = Pi if Pi is not None else np.full(K, 1 / K)
T = len(y)
T1 = np.empty((K, T), 'd')
T2 = np.empty((K, T), 'B')

# Initilaize the tracking tables from first observation
T1[:, 0] = Pi * B[:, y[0]]
T2[:, 0] = 0

# Iterate throught the observations updating the tracking tables
for i in range(1, T):
T1[:, i] = np.max(T1[:, i - 1] * A.T * B[np.newaxis, :, y[i]].T, 1)
T2[:, i] = np.argmax(T1[:, i - 1] * A.T, 1)

# Build the output, optimal model trajectory
x = np.empty(T, 'B')
x[-1] = np.argmax(T1[:, T - 1])
for i in reversed(range(1, T)):
x[i - 1] = T2[x[i], i]

return x, T1, T2

关于维特比算法的 Python 实现,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/9729968/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com