gpt4 book ai didi

python - 来自数据帧的神经网络 LSTM 输入形状

转载 作者:IT老高 更新时间:2023-10-28 22:00:32 24 4
gpt4 key购买 nike

我正在尝试实现 LSTM with Keras .

我知道 Keras 中的 LSTM 需要一个形状为 (nb_samples, timesteps, input_dim) 的 3D 张量作为输入。但是,我不完全确定在我的情况下输入应该是什么样子,因为我对每个输入只有一个 T 观察样本,而不是多个样本,即 (nb_samples=1, timesteps=T, input_dim=N)。将我的每个输入分成长度为 T/M 的样本会更好吗? T 对我来说大约是几百万次观察,那么在这种情况下每个样本应该多长时间,即我将如何选择 M

另外,这个张量看起来应该是这样的,我说得对吗:

[[[a_11, a_12, ..., a_1M], [a_21, a_22, ..., a_2M], ..., [a_N1, a_N2, ..., a_NM]], 
[[b_11, b_12, ..., b_1M], [b_21, b_22, ..., b_2M], ..., [b_N1, b_N2, ..., b_NM]],
...,
[[x_11, x_12, ..., a_1M], [x_21, x_22, ..., x_2M], ..., [x_N1, x_N2, ..., x_NM]]]

其中 M 和 N 如前定义,x 对应于我从上面讨论的拆分中获得的最后一个样本?

最后,给定一个 pandas 数据框,每列中都有 T 观察值,以及 N 列,每个输入一个,我如何创建这样一个输入来提供给 Keras ?

最佳答案

以下是设置时间序列数据以训练 LSTM 的示例。模型输出是胡说八道,因为我设置它只是为了演示如何构建模型。

import pandas as pd
import numpy as np
# Get some time series data
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/timeseries.csv")
df.head()

时间序列数据框:

Date      A       B       C      D      E      F      G
0 2008-03-18 24.68 164.93 114.73 26.27 19.21 28.87 63.44
1 2008-03-19 24.18 164.89 114.75 26.22 19.07 27.76 59.98
2 2008-03-20 23.99 164.63 115.04 25.78 19.01 27.04 59.61
3 2008-03-25 24.14 163.92 114.85 27.41 19.61 27.84 59.41
4 2008-03-26 24.44 163.45 114.84 26.86 19.53 28.02 60.09

您可以将 put 输入构建到向量中,然后使用 pandas .cumsum() 函数来构建时间序列的序列:

# Put your inputs into a single list
df['single_input_vector'] = df[input_cols].apply(tuple, axis=1).apply(list)
# Double-encapsulate list so that you can sum it in the next step and keep time steps as separate elements
df['single_input_vector'] = df.single_input_vector.apply(lambda x: [list(x)])
# Use .cumsum() to include previous row vectors in the current row list of vectors
df['cumulative_input_vectors'] = df.single_input_vector.cumsum()

输出可以以类似的方式设置,但它将是单个向量而不是序列:

# If your output is multi-dimensional, you need to capture those dimensions in one object
# If your output is a single dimension, this step may be unnecessary
df['output_vector'] = df[output_cols].apply(tuple, axis=1).apply(list)

输入序列的长度必须相同才能在模型中运行,因此您需要将它们填充为累积向量的最大长度:

# Pad your sequences so they are the same length
from keras.preprocessing.sequence import pad_sequences

max_sequence_length = df.cumulative_input_vectors.apply(len).max()
# Save it as a list
padded_sequences = pad_sequences(df.cumulative_input_vectors.tolist(), max_sequence_length).tolist()
df['padded_input_vectors'] = pd.Series(padded_sequences).apply(np.asarray)

可以从数据框中提取训练数据并将其放入 numpy 数组中。 请注意,来自数据框的输入数据不会构成 3D 数组。它做一个数组数组,这不是一回事。

您可以使用 hstack 和 reshape 来构建 3D 输入数组。

# Extract your training data
X_train_init = np.asarray(df.padded_input_vectors)
# Use hstack to and reshape to make the inputs a 3d vector
X_train = np.hstack(X_train_init).reshape(len(df),max_sequence_length,len(input_cols))
y_train = np.hstack(np.asarray(df.output_vector)).reshape(len(df),len(output_cols))

为了证明:

>>> print(X_train_init.shape)
(11,)
>>> print(X_train.shape)
(11, 11, 6)
>>> print(X_train == X_train_init)
False

获得训练数据后,您可以定义输入层和输出层的维度。

# Get your input dimensions
# Input length is the length for one input sequence (i.e. the number of rows for your sample)
# Input dim is the number of dimensions in one input vector (i.e. number of input columns)
input_length = X_train.shape[1]
input_dim = X_train.shape[2]
# Output dimensions is the shape of a single output vector
# In this case it's just 1, but it could be more
output_dim = len(y_train[0])

构建模型:

from keras.models import Model, Sequential
from keras.layers import LSTM, Dense

# Build the model
model = Sequential()

# I arbitrarily picked the output dimensions as 4
model.add(LSTM(4, input_dim = input_dim, input_length = input_length))
# The max output value is > 1 so relu is used as final activation.
model.add(Dense(output_dim, activation='relu'))

model.compile(loss='mean_squared_error',
optimizer='sgd',
metrics=['accuracy'])

最后你可以训练模型并将训练日志保存为历史:

# Set batch_size to 7 to show that it doesn't have to be a factor or multiple of your sample size
history = model.fit(X_train, y_train,
batch_size=7, nb_epoch=3,
verbose = 1)

输出:

Epoch 1/3
11/11 [==============================] - 0s - loss: 3498.5756 - acc: 0.0000e+00
Epoch 2/3
11/11 [==============================] - 0s - loss: 3498.5755 - acc: 0.0000e+00
Epoch 3/3
11/11 [==============================] - 0s - loss: 3498.5757 - acc: 0.0000e+00

就是这样。使用 model.predict(X) 其中 XX_train 的格式(样本数除外)相同,以便从模型。

关于python - 来自数据帧的神经网络 LSTM 输入形状,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/39674713/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com