- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我正在尝试学习如何使用 tensorflow 和 tensorboard。我有一个基于 MNIST neural net tutorial 的测试项目.
在我的代码中,我构建了一个节点,用于计算数据集中正确分类的数字比例,如下所示:
correct = tf.nn.in_top_k(self._logits, labels, 1)
correct = tf.to_float(correct)
accuracy = tf.reduce_mean(correct)
这里,self._logits
是图的推理部分,labels
是包含正确标签的占位符。
现在,我想做的是在训练进行时评估训练集和验证集的准确性。我可以通过使用不同的 feed_dicts 两次运行准确度节点来做到这一点:
train_acc = tf.run(accuracy, feed_dict={images : training_set.images, labels : training_set.labels})
valid_acc = tf.run(accuracy, feed_dict={images : validation_set.images, labels : validation_set.labels})
这按预期工作。我可以打印这些值,我可以看到,最初,两个准确度都会增加,最终验证准确度会趋于平缓,而训练准确度会不断增加。
但是,我也想在 tensorboard 中获取这些值的图表,但我不知道如何做到这一点。如果我只是将 scalar_summary
添加到 accuracy
,则记录的值将无法区分训练集和验证集。
我还尝试创建两个具有不同名称的相同 accuracy
节点,并在训练集和验证集上运行一个。然后,我将 scalar_summary
添加到每个节点。这确实在张量板上给了我两张图,但不是一张显示训练集准确度的图和一张显示验证集准确度的图,它们都显示了与打印到终端中的任何一个都不匹配的相同值。
我可能误解了如何解决这个问题。针对不同输入分别记录单个节点的输出的推荐方法是什么?
最佳答案
有几种不同的方法可以实现这一点,但创建不同的 tf.summary.scalar()
是正确的。节点。由于您必须显式调用 SummaryWriter.add_summary()
每次您想将数量记录到事件文件时,最简单的方法可能是每次您想获得训练或验证准确性时获取适当的摘要节点:
accuracy = tf.reduce_mean(correct)
training_summary = tf.summary.scalar("training_accuracy", accuracy)
validation_summary = tf.summary.scalar("validation_accuracy", accuracy)
summary_writer = tf.summary.FileWriter(...)
for step in xrange(NUM_STEPS):
# Perform a training step....
if step % LOG_PERIOD == 0:
# To log training accuracy.
train_acc, train_summ = sess.run(
[accuracy, training_summary],
feed_dict={images : training_set.images, labels : training_set.labels})
writer.add_summary(train_summ, step)
# To log validation accuracy.
valid_acc, valid_summ = sess.run(
[accuracy, validation_summary],
feed_dict={images : validation_set.images, labels : validation_set.labels})
writer.add_summary(valid_summ, step)
或者,您可以创建一个标签为 tf.placeholder(tf.string, [])
的摘要操作。并根据需要输入字符串 "training_accuracy"
或 "validation_accuracy"
。
关于python - 在张量板上记录训练和验证损失,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34471563/
我是pytorch的新手。请问添加'loss.item()'有什么区别?以下2部分代码: for epoch in range(epochs): trainingloss =0 for
我有一个包含 4 列的 MySQL 表,如下所示。 TransactionID | Item | Amount | Date ------------------------------------
我目前正在使用 cocos2d、Box2D 和 Objective-C 为 iPad 和 iPhone 制作游戏。 每次更新都会发生很多事情,很多事情必须解决。 我最近将我的很多代码重构为几个小方法,
我一直在关注 Mixed Precision Guide .因此,我正在设置: keras.mixed_precision.set_global_policy(mixed_precision) 像这样
double lnumber = Math.pow(2, 1000); 打印 1.0715086071862673E301 我尝试过的事情 我尝试使用 BigDecimal 类来扩展这个数字: St
我正在尝试创建一个神经网络来近似函数(正弦、余弦、自定义...),但我在格式上遇到困难,我不想使用输入标签,而是使用输入输出。我该如何更改它? 我正在关注this tutorial import te
我有一个具有 260,000 行和 35 列的“单热编码”(全一和零)数据矩阵。我正在使用 Keras 训练一个简单的神经网络来预测一个连续变量。制作网络的代码如下: model = Sequenti
什么是像素级 softmax 损失?在我的理解中,这只是一个交叉熵损失,但我没有找到公式。有人能帮我吗?最好有pytorch代码。 最佳答案 您可以阅读 here所有相关内容(那里还有一个指向源代码的
我正在训练一个 CNN 架构来使用 PyTorch 解决回归问题,其中我的输出是一个 20 个值的张量。我计划使用 RMSE 作为模型的损失函数,并尝试使用 PyTorch 的 nn.MSELoss(
在每个时代结束时,我得到例如以下输出: Epoch 1/25 2018-08-06 14:54:12.555511: 2/2 [==============================] - 86
我正在使用 Keras 2.0.2 功能 API (Tensorflow 1.0.1) 来实现一个网络,该网络接受多个输入并产生两个输出 a 和 b。我需要使用 cosine_proximity 损失
我正在尝试设置很少层的神经网络,这将解决简单的回归问题,这应该是f(x) = 0,1x 或 f(x) = 10x 所有代码如下所示(数据生成和神经网络) 4 个带有 ReLu 的全连接层 损失函数 R
我正在研究在 PyTorch 中使用带有梯度惩罚的 Wasserstein GAN,但始终得到大的、正的生成器损失,并且随着时间的推移而增加。 我从 Caogang's implementation
我正在尝试在 TensorFlow 中实现最大利润损失。这个想法是我有一些积极的例子,我对一些消极的例子进行了采样,并想计算类似的东西 其中 B 是我的批处理大小,N 是我要使用的负样本数。 我是 t
我正在尝试预测一个连续值(第一次使用神经网络)。我已经标准化了输入数据。我不明白为什么我会收到 loss: nan从第一个纪元开始的输出。 我阅读并尝试了以前对同一问题的回答中的许多建议,但没有一个对
我目前正在学习神经网络,并尝试训练 MLP 以使用 Python 中的反向传播来学习 XOR。该网络有两个隐藏层(使用 Sigmoid 激活)和一个输出层(也是 Sigmoid)。 网络(大约 20,
尝试在 keras 中自定义损失函数(平滑 L1 损失),如下所示 ValueError: Shape must be rank 0 but is rank 5 for 'cond/Switch' (
我试图在 tensorflow 中为门牌号图像创建一个卷积神经网络 http://ufldl.stanford.edu/housenumbers/ 当我运行我的代码时,我在第一步中得到了 nan 的成
我正在尝试使用我在 Keras 示例( https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder
我试图了解 CTC 损失如何用于语音识别以及如何在 Keras 中实现它。 我认为我理解的内容(如果我错了,请纠正我!)总体而言,CTC 损失被添加到经典网络之上,以便逐个元素(对于文本或语音而言逐个
我是一名优秀的程序员,十分优秀!