- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我想向运行 MS SQL 的远程服务器发送一个大型 pandas.DataFrame
。我现在这样做的方法是将 data_frame
对象转换为元组列表,然后使用 pyODBC 的 executemany()
函数将其发送出去。它是这样的:
import pyodbc as pdb
list_of_tuples = convert_df(data_frame)
connection = pdb.connect(cnxn_str)
cursor = connection.cursor()
cursor.fast_executemany = True
cursor.executemany(sql_statement, list_of_tuples)
connection.commit()
cursor.close()
connection.close()
然后我开始怀疑是否可以通过使用 data_frame.to_sql()
方法来加快速度(或者至少更具可读性)。我想出了以下解决方案:
import sqlalchemy as sa
engine = sa.create_engine("mssql+pyodbc:///?odbc_connect=%s" % cnxn_str)
data_frame.to_sql(table_name, engine, index=False)
现在代码更具可读性,但上传速度至少慢了 150 倍...
在使用 SQLAlchemy 时有没有办法翻转 fast_executemany
?
我正在使用 pandas-0.20.3、pyODBC-4.0.21 和 sqlalchemy-1.1.13。
最佳答案
编辑(2019-03-08): Gord Thompson 在下面评论了来自 sqlalchemy 更新日志的好消息:自 2019-03-04 发布的 SQLAlchemy 1.3.0 以来,sqlalchemy现在支持 mssql+pyodbc
方言的 engine = create_engine(sqlalchemy_url, fast_executemany=True)
。即,不再需要定义函数并使用 @event.listens_for(engine, 'before_cursor_execute')
这意味着可以删除以下函数,只需要设置标志在 create_engine 语句中 - 仍然保持加速。
原帖:
刚刚注册了一个帐户来发布这个。我想在上面的帖子下发表评论,因为它是对已经提供的答案的跟进。上面的解决方案适用于我在基于 Ubuntu 的安装中写入的 Microsft SQL 存储上的版本 17 SQL 驱动程序。
我用来显着加快速度的完整代码(加速 > 100 倍)如下。这是一个交 key 代码段,前提是您使用相关详细信息更改连接字符串。对于上面的海报,非常感谢您的解决方案,因为我已经为此寻找了相当长的时间。
import pandas as pd
import numpy as np
import time
from sqlalchemy import create_engine, event
from urllib.parse import quote_plus
conn = "DRIVER={ODBC Driver 17 for SQL Server};SERVER=IP_ADDRESS;DATABASE=DataLake;UID=USER;PWD=PASS"
quoted = quote_plus(conn)
new_con = 'mssql+pyodbc:///?odbc_connect={}'.format(quoted)
engine = create_engine(new_con)
@event.listens_for(engine, 'before_cursor_execute')
def receive_before_cursor_execute(conn, cursor, statement, params, context, executemany):
print("FUNC call")
if executemany:
cursor.fast_executemany = True
table_name = 'fast_executemany_test'
df = pd.DataFrame(np.random.random((10**4, 100)))
s = time.time()
df.to_sql(table_name, engine, if_exists = 'replace', chunksize = None)
print(time.time() - s)
根据下面的评论,我想花一些时间来解释一下 pandas to_sql
实现和查询处理方式的一些限制。有两件事可能会导致 MemoryError
被引发 afaik:
1) 假设您正在写入远程 SQL 存储。当您尝试使用 to_sql
方法编写 Pandas 数据帧时,它会将整个数据帧转换为值列表。这种转换比原始 DataFrame 占用更多的 RAM(最重要的是,旧的 DataFrame 仍然存在于 RAM 中)。此列表提供给您的 ODBC 连接器的最终 executemany
调用。我认为 ODBC 连接器在处理如此大的查询时遇到了一些麻烦。解决此问题的一种方法是为 to_sql
方法提供一个 chunksize 参数(10**5 似乎是最佳的,在 2 CPU 7GB ram MSSQL 存储上提供大约 600 mbit/s (!) 写入速度来自 Azure 的应用程序 - 不能推荐 Azure 顺便说一句)。因此,第一个限制,即查询大小,可以通过提供 chunksize
参数来规避。但是,这不会让您编写大小为 10**7 或更大的数据帧(至少在我正在使用的具有 ~55GB RAM 的 VM 上不是),问题 nr 2。
这可以通过用 np.split
(即 10**6 大小的 DataFrame block )分解 DataFrame 来规避。这些可以迭代地写掉。当我为 pandas 核心中的 to_sql
方法准备好解决方案时,我将尝试发出拉取请求,这样您就不必每次都进行预先分解。无论如何,我最终编写了一个与以下类似(不是交 key )的功能:
import pandas as pd
import numpy as np
def write_df_to_sql(df, **kwargs):
chunks = np.split(df, df.shape()[0] / 10**6)
for chunk in chunks:
chunk.to_sql(**kwargs)
return True
可以在此处查看上述代码段的更完整示例:https://gitlab.com/timelord/timelord/blob/master/timelord/utils/connector.py
这是我编写的一个类,它包含了补丁,并减轻了与 SQL 建立连接所带来的一些必要开销。还是要写一些文档。我还计划将补丁贡献给 pandas 本身,但还没有找到一个好的方法。
我希望这会有所帮助。
关于python - 使用 pyODBC 的 fast_executemany 加速 pandas.DataFrame.to_sql,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48006551/
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
假设我有 3 个 DataFrame。其中一个 DataFrame 的列名不在其他两个中。 using DataFrames df1 = DataFrame([['a', 'b', 'c'], [1,
我有一个 largeDataFrame(多列和数十亿行)和一个 smallDataFrame(单列和 10,000 行)。 只要 largeDataFrame 中的 some_identifier 列
我有一个函数,可以在其中规范化 DataFrame 的前 N 列。我想返回规范化的 DataFrame,但不要管原来的。然而,该函数似乎也会对传递的 DataFrame 进行变异! using D
我想在 Scala 中使用指定架构在 DataFrame 上创建。我尝试过使用 JSON 读取(我的意思是读取空文件),但我认为这不是最佳实践。 最佳答案 假设您想要一个具有以下架构的数据框: roo
我正在尝试从数据框中删除一些列,并且不希望返回修改后的数据框并将其重新分配给旧数据框。相反,我希望该函数只修改数据框。这是我尝试过的,但它似乎并没有做我所除外的事情。我的印象是参数是作为引用传递的,而
我有一个包含大约 60000 个数据的庞大数据集。我会首先使用一些标准对整个数据集进行分组,接下来我要做的是将整个数据集分成标准内的许多小数据集,并自动对每个小数据集运行一个函数以获取参数对于每个小数
我遇到了以下问题,并有一个想法来解决它,但没有成功:我有一个月内每个交易日的 DAX 看涨期权和看跌期权数据。经过转换和一些计算后,我有以下 DataFrame: DaxOpt 。现在的目标是消除没有
我正在尝试做一些我认为应该是单行的事情,但我正在努力把它做好。 我有一个大数据框,我们称之为lg,还有一个小数据框,我们称之为sm。每个数据帧都有一个 start 和一个 end 列,以及多个其他列所
我有一个像这样的系列数据帧的数据帧: state1 state2 state3 ... sym1 sym
我有一个大约有 9k 行和 57 列的数据框,这是“df”。 我需要一个新的数据框:'df_final'- 对于“df”的每一行,我必须将每一行复制“x”次,并将每一行中的日期逐一增加,也就是“x”次
假设有一个 csv 文件如下: # data.csv 0,1,2,3,4 a,3.0,3.0,3.0,3.0,3.0 b,3.0,3.0,3.0,3.0,3.0 c,3.0,3.0,3.0,3.0,3
我只想知道是否有人对以下问题有更优雅的解决方案: 我有两个 Pandas DataFrame: import pandas as pd df1 = pd.DataFrame([[1, 2, 3], [
我有一个 pyspark 数据框,我需要将其转换为 python 字典。 下面的代码是可重现的: from pyspark.sql import Row rdd = sc.parallelize([R
我有一个 DataFrame,我想在 @chain 的帮助下对其进行处理。如何存储中间结果? using DataFrames, Chain df = DataFrame(a = [1,1,2,2,2
我有一个包含 3 列的 DataFrame,名为 :x :y 和 :z,它们是 Float64 类型。 :x 和 "y 在 (0,1) 上是 iid uniform 并且 z 是 x 和 y 的总和。
这个问题在这里已经有了答案: pyspark dataframe filter or include based on list (3 个答案) 关闭 2 年前。 只是想知道是否有任何有效的方法来过
我刚找到这个包FreqTables ,它允许人们轻松地从 DataFrames 构建频率表(我正在使用 DataFrames.jl)。 以下代码行返回一个频率表: df = CSV.read("exa
是否有一种快速的方法可以为 sort 指定自定义订单?/sort!在 Julia DataFrames 上? julia> using DataFrames julia> srand(1); juli
在 Python Pandas 和 R 中,可以轻松去除重复的列 - 只需加载数据、分配列名,然后选择那些不重复的列。 使用 Julia Dataframes 处理此类数据的最佳实践是什么?此处不允许
我是一名优秀的程序员,十分优秀!