gpt4 book ai didi

python - GridSearch 用于 OneVsRestClassifier 中的估计器

转载 作者:IT老高 更新时间:2023-10-28 21:49:16 30 4
gpt4 key购买 nike

我想在 SVC 模型中执行 GridSearchCV,但它使用一对多策略。对于后一部分,我可以这样做:

model_to_set = OneVsRestClassifier(SVC(kernel="poly"))

我的问题在于参数。假设我想尝试以下值:

parameters = {"C":[1,2,4,8], "kernel":["poly","rbf"],"degree":[1,2,3,4]}

为了执行 GridSearchCV,我应该这样做:

 cv_generator = StratifiedKFold(y, k=10)
model_tunning = GridSearchCV(model_to_set, param_grid=parameters, score_func=f1_score, n_jobs=1, cv=cv_generator)

但是,然后我执行它我得到:

Traceback (most recent call last):
File "/.../main.py", line 66, in <module>
argclass_sys.set_model_parameters(model_name="SVC", verbose=3, file_path=PATH_ROOT_MODELS)
File "/.../base.py", line 187, in set_model_parameters
model_tunning.fit(self.feature_encoder.transform(self.train_feats), self.label_encoder.transform(self.train_labels))
File "/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.py", line 354, in fit
return self._fit(X, y)
File "/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.py", line 392, in _fit
for clf_params in grid for train, test in cv)
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 473, in __call__
self.dispatch(function, args, kwargs)
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 296, in dispatch
job = ImmediateApply(func, args, kwargs)
File "/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.py", line 124, in __init__
self.results = func(*args, **kwargs)
File "/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.py", line 85, in fit_grid_point
clf.set_params(**clf_params)
File "/usr/local/lib/python2.7/dist-packages/sklearn/base.py", line 241, in set_params
% (key, self.__class__.__name__))
ValueError: Invalid parameter kernel for estimator OneVsRestClassifier

基本上,由于 SVC 位于 OneVsRestClassifier 内,并且这是我发送到 GridSearchCV 的估计器,因此无法访问 SVC 的参数。

为了完成我想要的,我看到了两个解决方案:

  1. 在创建 SVC 时,以某种方式告诉它不要使用一对一的策略,而是使用一对一的策略。
  2. 以某种方式指示参数对应于 OneVsRestClassifier 内的估计器的 GridSearchCV。

我还没有找到一种方法来做任何提到的替代方案。你知道是否有办法做到这些吗?或者您可以建议另一种方法来获得相同的结果?

谢谢!

最佳答案

当您使用带有网格搜索的嵌套估算器时,您可以使用 __ 作为分隔符来限定参数。在这种情况下,SVC 模型存储为 OneVsRestClassifier 模型中名为 estimator 的属性:

from sklearn.datasets import load_iris
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import f1_score

iris = load_iris()

model_to_set = OneVsRestClassifier(SVC(kernel="poly"))

parameters = {
"estimator__C": [1,2,4,8],
"estimator__kernel": ["poly","rbf"],
"estimator__degree":[1, 2, 3, 4],
}

model_tunning = GridSearchCV(model_to_set, param_grid=parameters,
score_func=f1_score)

model_tunning.fit(iris.data, iris.target)

print model_tunning.best_score_
print model_tunning.best_params_

产生:

0.973290762737
{'estimator__kernel': 'poly', 'estimator__C': 1, 'estimator__degree': 2}

关于python - GridSearch 用于 OneVsRestClassifier 中的估计器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/12632992/

30 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com