- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我在数据帧上运行“describe()”并仅获取 int 列的摘要(pandas 14.0)。
文档说,对于最常见值的对象列频率,将返回额外的统计信息。有什么问题? (顺便没有返回错误信息)
编辑:
我认为这是该函数在数据框中的混合列类型上的行为方式。虽然文档没有提到它。
示例代码:
df_test = pd.DataFrame({'$a':[1,2], '$b': [10,20]})
df_test.dtypes
df_test.describe()
df_test['$a'] = df_test['$a'].astype(str)
df_test.describe()
df_test['$a'].describe()
df_test['$b'].describe()
与此同时,我的丑陋工作:
def my_df_describe(df):
objects = []
numerics = []
for c in df:
if (df[c].dtype == object):
objects.append(c)
else:
numerics.append(c)
return df[numerics].describe(), df[objects].describe()
最佳答案
从 pandas v15.0 开始,使用参数 DataFrame.describe(include = 'all')
当数据框具有混合列类型时,获取所有列的摘要。默认行为是仅提供数字列的摘要。
示例:
In[1]:
df = pd.DataFrame({'$a':['a', 'b', 'c', 'd', 'a'], '$b': np.arange(5)})
df.describe(include = 'all')
Out[1]:
$a $b
count 5 5.000000
unique 4 NaN
top a NaN
freq 2 NaN
mean NaN 2.000000
std NaN 1.581139
min NaN 0.000000
25% NaN 1.000000
50% NaN 2.000000
75% NaN 3.000000
max NaN 4.000000
数值列将包含 NaN,用于与对象(字符串)相关的汇总统计信息,反之亦然。
仅汇总数字或对象列
describe()
,请使用 describe(include = [np.number])
使用 describe(include = ['O'])
仅对对象(字符串)调用 describe()
。
In[2]:
df.describe(include = [np.number])
Out[3]:
$b
count 5.000000
mean 2.000000
std 1.581139
min 0.000000
25% 1.000000
50% 2.000000
75% 3.000000
max 4.000000
In[3]:
df.describe(include = ['O'])
Out[3]:
$a
count 5
unique 4
top a
freq 2
关于python - Pandas 'describe' 未返回所有列的摘要,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24524104/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!