作者热门文章
- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我在 IPython 中有以下数据框,其中每一行都是一个股票:
In [261]: bdata
Out[261]:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 21210 entries, 0 to 21209
Data columns:
BloombergTicker 21206 non-null values
Company 21210 non-null values
Country 21210 non-null values
MarketCap 21210 non-null values
PriceReturn 21210 non-null values
SEDOL 21210 non-null values
yearmonth 21210 non-null values
dtypes: float64(2), int64(1), object(4)
我想应用一个 groupby 操作,计算“年月”列中每个日期的所有事物的上限加权平均返回。
这按预期工作:
In [262]: bdata.groupby("yearmonth").apply(lambda x: (x["PriceReturn"]*x["MarketCap"]/x["MarketCap"].sum()).sum())
Out[262]:
yearmonth
201204 -0.109444
201205 -0.290546
但是我想将这些值“广播”回原始数据框中的索引,并将它们保存为日期匹配的常量列。
In [263]: dateGrps = bdata.groupby("yearmonth")
In [264]: dateGrps["MarketReturn"] = dateGrps.apply(lambda x: (x["PriceReturn"]*x["MarketCap"]/x["MarketCap"].sum()).sum())
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
/mnt/bos-devrnd04/usr6/home/espears/ws/Research/Projects/python-util/src/util/<ipython-input-264-4a68c8782426> in <module>()
----> 1 dateGrps["MarketReturn"] = dateGrps.apply(lambda x: (x["PriceReturn"]*x["MarketCap"]/x["MarketCap"].sum()).sum())
TypeError: 'DataFrameGroupBy' object does not support item assignment
我意识到这个幼稚的任务不应该奏效。但是,将 groupby 操作的结果分配到父数据框上的新列中的“正确”Pandas 习语是什么?
最后,我想要一个名为“MarketReturn”的列,而不是所有与 groupby 操作的输出具有匹配日期的索引的重复常量值。
实现此目的的一个技巧如下:
marketRetsByDate = dateGrps.apply(lambda x: (x["PriceReturn"]*x["MarketCap"]/x["MarketCap"].sum()).sum())
bdata["MarketReturn"] = np.repeat(np.NaN, len(bdata))
for elem in marketRetsByDate.index.values:
bdata["MarketReturn"][bdata["yearmonth"]==elem] = marketRetsByDate.ix[elem]
但这很慢,很糟糕,而且不符合 Python 风格。
最佳答案
In [97]: df = pandas.DataFrame({'month': np.random.randint(0,11, 100), 'A': np.random.randn(100), 'B': np.random.randn(100)})
In [98]: df.join(df.groupby('month')['A'].sum(), on='month', rsuffix='_r')
Out[98]:
A B month A_r
0 -0.040710 0.182269 0 -0.331816
1 -0.004867 0.642243 1 2.448232
2 -0.162191 0.442338 4 2.045909
3 -0.979875 1.367018 5 -2.736399
4 -1.126198 0.338946 5 -2.736399
5 -0.992209 -1.343258 1 2.448232
6 -1.450310 0.021290 0 -0.331816
7 -0.675345 -1.359915 9 2.722156
关于Python Pandas 如何将 groupby 操作结果分配回父数据框中的列?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/12200693/
我是一名优秀的程序员,十分优秀!