- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
对于 pandas,如果有任何数据类型,谁会知道
(i) float64
、int64
(以及 np.number
的其他变体,例如 float32
、int8
等)
(ii) bool
(iii) datetime64
, timedelta64
比如字符串列,总是有一个 dtype
的 object
?
或者,我想知道,除了上面的列表中的 (i)、(ii) 和 (iii) 之外,是否有任何数据类型 pandas
不会使其成为 dtype
一个对象
?
最佳答案
pandas
从 numpy
借用它的 dtypes。有关这一点的演示,请参见以下内容:
import pandas as pd
df = pd.DataFrame({'A': [1,'C',2.]})
df['A'].dtype
>>> dtype('O')
type(df['A'].dtype)
>>> numpy.dtype
你可以找到有效的numpy.dtypes
列表in the documentation :
'?' boolean
'b' (signed) byte
'B' unsigned byte
'i' (signed) integer
'u' unsigned integer
'f' floating-point
'c' complex-floating point
'm' timedelta
'M' datetime
'O' (Python) objects
'S', 'a' zero-terminated bytes (not recommended)
'U' Unicode string
'V' raw data (void)
pandas
应该支持这些类型。使用带有上述任何选项的 pandas.Series
对象的 astype
方法作为输入参数将导致 pandas
尝试将 Series
到那个类型(或者至少回退到 object
类型); 'u'
是我唯一看到 pandas
完全不理解的一个:
df['A'].astype('u')
>>> TypeError: data type "u" not understood
这是一个 numpy
错误,因为 'u'
后面需要一个数字来指定每个项目的字节数(这需要有效):
import numpy as np
np.dtype('u')
>>> TypeError: data type "u" not understood
np.dtype('u1')
>>> dtype('uint8')
np.dtype('u2')
>>> dtype('uint16')
np.dtype('u4')
>>> dtype('uint32')
np.dtype('u8')
>>> dtype('uint64')
# testing another invalid argument
np.dtype('u3')
>>> TypeError: data type "u3" not understood
总而言之,pandas
对象的 astype
方法将尝试对任何对 numpy.dtype
有效的参数做一些有意义的事情。注意 numpy.dtype('f')
与 numpy.dtype('float32')
和 numpy.dtype('f8')
相同code> 与 numpy.dtype('float64')
等相同。将参数传递给 pandas
astype
方法也是如此。
要在 NumPy 中定位相应的数据类型类,Pandas docs推荐这个:
def subdtypes(dtype):
subs = dtype.__subclasses__()
if not subs:
return dtype
return [dtype, [subdtypes(dt) for dt in subs]]
subdtypes(np.generic)
输出:
[numpy.generic,
[[numpy.number,
[[numpy.integer,
[[numpy.signedinteger,
[numpy.int8,
numpy.int16,
numpy.int32,
numpy.int64,
numpy.int64,
numpy.timedelta64]],
[numpy.unsignedinteger,
[numpy.uint8,
numpy.uint16,
numpy.uint32,
numpy.uint64,
numpy.uint64]]]],
[numpy.inexact,
[[numpy.floating,
[numpy.float16, numpy.float32, numpy.float64, numpy.float128]],
[numpy.complexfloating,
[numpy.complex64, numpy.complex128, numpy.complex256]]]]]],
[numpy.flexible,
[[numpy.character, [numpy.bytes_, numpy.str_]],
[numpy.void, [numpy.record]]]],
numpy.bool_,
numpy.datetime64,
numpy.object_]]
Pandas 接受这些类作为有效类型。例如,dtype={'A': np.float}
.
NumPy 文档 contain更多细节和图表:
关于python - Pandas 识别的所有 dtypes 是什么?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29245848/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!