- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
示例数据集:
>>> df
ID Region count
0 100 Asia 2
1 101 Europe 3
2 102 US 1
3 103 Africa 5
4 100 Russia 5
5 101 Australia 7
6 102 US 8
7 104 Asia 10
8 105 Europe 11
9 110 Africa 23
我想按 ID
和 Region
对这个数据集的观察结果进行分组,并对每个组的 count
求和。所以我用了这样的东西......
>>> print(df.groupby(['ID','Region'],as_index=False).count().sum())
ID Region count
0 100 Asia 2
1 100 Russia 5
2 101 Australia 7
3 101 Europe 3
4 102 US 9
5 103 Africa 5
6 104 Asia 10
7 105 Europe 11
8 110 Africa 23
在使用 as_index=False
时,我可以获得“类似 SQL”的输出。我的问题是我无法在此处重命名聚合变量 count
。所以在 SQL 中,如果想做上述事情,我会做这样的事情:
select ID, Region, sum(count) as Total_Numbers
from df
group by ID, Region
order by ID, Region
正如我们所见,在 SQL 中将聚合变量 count
重命名为 Total_Numbers
对我来说非常容易。我想在 Pandas 中做同样的事情,但在 group-by 函数中找不到这样的选项。有人可以帮忙吗?
第二个问题(更多是观察)是是否……
我知道变量名是字符串,所以必须在引号内,但我看看是否在数据框函数之外使用它们,并且作为属性,我们不要求它们在引号内。像 df.ID.sum()
等。只有当我们在像 df.sort()
或 df.groupby
这样的 DataFrame 函数中使用它时> 我们必须在引号内使用它。这实际上有点痛苦,因为在 SQL 或 SAS 或其他语言中,我们只是使用变量名而不引用它们。对此有何建议?
请回答两个问题(Q1 是主要的,Q2 更多的意见)。
最佳答案
对于第一个问题,我认为答案是:
<your DataFrame>.rename(columns={'count':'Total_Numbers'})
或
<your DataFrame>.columns = ['ID', 'Region', 'Total_Numbers']
至于第二个,我会说答案是否定的。由于python datamodel,它可以像'df.ID'一样使用。 :
Attribute references are translated to lookups in this dictionary, e.g., m.x is equivalent to m.dict["x"]
关于python - 在 Pandas Groupby 函数中重命名列名,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19523277/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!