gpt4 book ai didi

Python Opencv SolvePnP 产生错误的翻译向量

转载 作者:IT老高 更新时间:2023-10-28 21:12:16 25 4
gpt4 key购买 nike

我正在尝试使用单应性在 Blender 3d 中校准和查找单个虚拟相机的位置和旋转。我正在使用 Blender,以便在进入更困难的现实世界之前仔细检查我的结果。

我在我的固定相机的视野中渲染了十张棋盘在不同位置和旋转的图片。使用 OpenCV 的 Python,我使用 cv2.calibrateCamera 从十幅图像中检测到的棋盘角找到内在矩阵,然后在 cv2.solvePnP 中使用它来查找外部参数(平移和旋转)。

然而,虽然估计的参数接近实际参数,但还是有一些可疑之处。我对翻译的初步估计是 (-0.11205481,-0.0490256,8.13892491)。实际位置是 (0,0,8.07105)。很接近吧?

但是,当我稍微移动和旋转相机并重新渲染图像时,估计的平移变得更远了。估计:(-0.15933154,0.13367286,9.34058867)。实际:(-1.7918,-1.51073,9.76597)。 Z 值接近,但 X 和 Y 不接近。

我完全糊涂了。如果有人能帮我解决这个问题,我将不胜感激。这是代码(它基于 OpenCV 提供的 Python2 校准示例):

#imports left out
USAGE = '''
USAGE: calib.py [--save <filename>] [--debug <output path>] [--square_size] [<image mask>]
'''

args, img_mask = getopt.getopt(sys.argv[1:], '', ['save=', 'debug=', 'square_size='])
args = dict(args)
try: img_mask = img_mask[0]
except: img_mask = '../cpp/0*.png'
img_names = glob(img_mask)
debug_dir = args.get('--debug')
square_size = float(args.get('--square_size', 1.0))

pattern_size = (5, 8)
pattern_points = np.zeros( (np.prod(pattern_size), 3), np.float32 )
pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2)
pattern_points *= square_size

obj_points = []
img_points = []
h, w = 0, 0
count = 0
for fn in img_names:
print 'processing %s...' % fn,
img = cv2.imread(fn, 0)
h, w = img.shape[:2]
found, corners = cv2.findChessboardCorners(img, pattern_size)

if found:
if count == 0:
#corners first is a list of the image points for just the first image.
#This is the image I know the object points for and use in solvePnP
corners_first = []
for val in corners:
corners_first.append(val[0])
np_corners_first = np.asarray(corners_first,np.float64)
count+=1
term = ( cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1 )
cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
if debug_dir:
vis = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
cv2.drawChessboardCorners(vis, pattern_size, corners, found)
path, name, ext = splitfn(fn)
cv2.imwrite('%s/%s_chess.bmp' % (debug_dir, name), vis)
if not found:
print 'chessboard not found'
continue
img_points.append(corners.reshape(-1, 2))
obj_points.append(pattern_points)

print 'ok'

rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h))
print "RMS:", rms
print "camera matrix:\n", camera_matrix
print "distortion coefficients: ", dist_coefs.ravel()
cv2.destroyAllWindows()

np_xyz = np.array(xyz,np.float64).T #xyz list is from file. Not shown here for brevity
camera_matrix2 = np.asarray(camera_matrix,np.float64)
np_dist_coefs = np.asarray(dist_coefs[:,:],np.float64)

found,rvecs_new,tvecs_new = cv2.solvePnP(np_xyz, np_corners_first,camera_matrix2,np_dist_coefs)

np_rodrigues = np.asarray(rvecs_new[:,:],np.float64)
print np_rodrigues.shape
rot_matrix = cv2.Rodrigues(np_rodrigues)[0]

def rot_matrix_to_euler(R):
y_rot = asin(R[2][0])
x_rot = acos(R[2][2]/cos(y_rot))
z_rot = acos(R[0][0]/cos(y_rot))
y_rot_angle = y_rot *(180/pi)
x_rot_angle = x_rot *(180/pi)
z_rot_angle = z_rot *(180/pi)
return x_rot_angle,y_rot_angle,z_rot_angle

print "Euler_rotation = ",rot_matrix_to_euler(rot_matrix)
print "Translation_Matrix = ", tvecs_new

最佳答案

我认为您可能将 tvecs_new 视为相机位置。有点令人困惑,事实并非如此!事实上,它是世界原点在相机坐标中的位置。要在对象/世界坐标中获得相机姿势,我相信你需要

-np.matrix(rotation_matrix).T * np.matrix(tvecs_new)

您可以使用 cv2.decomposeProjectionMatrix(P)[-1] 获得欧拉角,其中 P[r|t] 3 x 4 外部矩阵。

我找到了 this成为一篇关于内在和外在的很好的文章......

关于Python Opencv SolvePnP 产生错误的翻译向量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14515200/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com