- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我决定比较 pandas 和 scipy.stats 中的 skew 和 kurtosis 函数,但不明白为什么我在库之间得到不同的结果。
据我从文档中得知,两个峰度函数都使用 Fisher 的定义进行计算,而对于偏斜,似乎没有足够的描述来说明它们的计算方式是否存在任何重大差异。
import pandas as pd
import scipy.stats.stats as st
heights = np.array([1.46, 1.79, 2.01, 1.75, 1.56, 1.69, 1.88, 1.76, 1.88, 1.78])
print "skewness:", st.skew(heights)
print "kurtosis:", st.kurtosis(heights)
返回:
skewness: -0.393524456473
kurtosis: -0.330672097724
而如果我转换为 pandas 数据框:
heights_df = pd.DataFrame(heights)
print "skewness:", heights_df.skew()
print "kurtosis:", heights_df.kurtosis()
返回:
skewness: 0 -0.466663
kurtosis: 0 0.379705
抱歉,如果我在错误的地方发布了此内容;不知道是统计问题还是编程问题。
最佳答案
差异是由于不同的归一化。默认情况下,Scipy 不会纠正偏差,而 pandas 会。
您可以通过传递 bias=False
参数告诉 scipy 纠正偏差:
>>> x = pandas.Series(np.random.randn(10))
>>> stats.skew(x)
-0.17644348972413657
>>> x.skew()
-0.20923623968879457
>>> stats.skew(x, bias=False)
-0.2092362396887948
>>> stats.kurtosis(x)
0.6362620964462327
>>> x.kurtosis()
2.0891062062174464
>>> stats.kurtosis(x, bias=False)
2.089106206217446
似乎没有办法告诉 pandas 消除偏差校正。
关于python - pandas 与 scipy 中的 skew 和 kurtosis 函数有什么区别?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33109107/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!