- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我最近查看了 convolutional text classification 的一个有趣的实现。 .然而,我查看过的所有 TensorFlow 代码都使用随机(未预训练)嵌入向量,如下所示:
with tf.device('/cpu:0'), tf.name_scope("embedding"):
W = tf.Variable(
tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
name="W")
self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
有人知道如何使用 Word2vec 或 GloVe 预训练词嵌入的结果而不是随机的吗?
最佳答案
您可以通过多种方式在 TensorFlow 中使用预训练嵌入。假设您在一个名为 embedding
的 NumPy 数组中嵌入了 vocab_size
行和 embedding_dim
列,并且您想创建一个张量 W
可用于调用 tf.nn.embedding_lookup()
.
只需将 W
创建为 tf.constant()
以 embedding
作为其值:
W = tf.constant(embedding, name="W")
这是最简单的方法,但内存效率不高,因为 tf.constant()
的值在内存中存储了多次。由于 embedding
可能非常大,因此您应该只将这种方法用于玩具示例。
创建 W
作为 tf.Variable
并通过 tf.placeholder()
从 NumPy 数组初始化它:
W = tf.Variable(tf.constant(0.0, shape=[vocab_size, embedding_dim]),
trainable=False, name="W")
embedding_placeholder = tf.placeholder(tf.float32, [vocab_size, embedding_dim])
embedding_init = W.assign(embedding_placeholder)
# ...
sess = tf.Session()
sess.run(embedding_init, feed_dict={embedding_placeholder: embedding})
这避免了在图中存储 embedding
的副本,但它确实需要足够的内存来一次在内存中保存矩阵的两个副本(一个用于 NumPy 数组,一个用于 tf.变量
)。请注意,我假设您希望在训练期间保持嵌入矩阵不变,因此 W
是使用 trainable=False
创建的。
如果嵌入是作为另一个 TensorFlow 模型的一部分进行训练的,您可以使用 tf.train.Saver
从另一个模型的检查点文件加载值。这意味着嵌入矩阵可以完全绕过 Python。像选项 2 一样创建 W
,然后执行以下操作:
W = tf.Variable(...)
embedding_saver = tf.train.Saver({"name_of_variable_in_other_model": W})
# ...
sess = tf.Session()
embedding_saver.restore(sess, "checkpoint_filename.ckpt")
关于python - 在 TensorFlow 中使用预训练的词嵌入(word2vec 或 Glove),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35687678/
假设我有一个组织 ID 向量 let orgs = vec![1, 3, 14, 12]; 然后我调用 .iter()在 each 上获取每个组织的事件,其中函数 get_events_for()返回
这个问题已经有答案了: What are Rust's exact auto-dereferencing rules? (4 个回答) 已关闭 3 年前。 我很困惑为什么这个函数 get适用于 Vec
let a = vec![ vec![1, 2], vec![3, 4], vec![5, 6] ]; 怎么才能聚成一个Vec包含在所有 Vec 中的所有值s 在 a ? 最佳答案 您可以使用 fla
我在HashMap, Vec>中有数据,我想将该数据作为字节缓冲区(单个Vec)写入文件,然后从文件中读取回去并重建HashMap结构。 是否有建立像这样的平坦化和恢复 map 的算法?我可以将元数据
我正在寻找一种“使用rust ”的方式来将 Vec 累积到 Vec 中,以便将每个内部 Vec 的第一个元素加在一起,将每个 Vec 的每个第二个元素加在一起,等等......,并将结果收集到 Vec
我正在寻找一种“使用rust ”的方式来将 Vec 累积到 Vec 中,以便将每个内部 Vec 的第一个元素加在一起,将每个 Vec 的每个第二个元素加在一起,等等......,并将结果收集到 Vec
我正在尝试使用 selection_sort 创建一个已排序的向量,同时保留原始未排序的向量: fn main() { let vector_1: Vec = vec![15, 23, 4,
在 https://doc.rust-lang.org/std/vec/struct.Vec.html#method.iter , 我只能在页面左侧的索引侧边栏中找到iter。但是,找不到 iter_
我正在尝试从 Vec> 创建一个集合向量 ( Vec> ) .这是我目前的进展: use std::collections::BTreeSet; fn main() { // The data
我错过了向量向量初始化的一些东西。在第一种方法中,我尝试了这段代码: let mut landFirst: Vec> = Vec::with_capacity(width); for v in lan
我想设计一个类似于示例 here 的函数除了我的情况,iproduct 的参数数量在编译时是未知的。正如 here 所解释的那样,这在 python 中很容易完成。 . 我已经尝试使用 itertoo
我有一个我不明白的问题: fn cipher_with(key: &[u8], data: &[u8]) -> Vec { let data_len = 16; let mut dat
我刚开始学习 Rust,我偶然发现了这个愚蠢的问题: error: mismatched types: expected `&[u8]` but found `&collections::vec::V
这个问题在这里已经有了答案: How to filter a vector of custom structs? (1 个回答) 关闭 4 年前。 我有一个接受 &Vec 的函数(其中 Word 是
试图创建一个 HashMap 的数据库结构向量。每个Vec包含 Box . use std::collections::HashMap; trait Model { fn id(&self)
我正在编写一个使用 Vec> 的库类型以按列优先顺序存储数据(每个内部 Vec 代表一列)。用户可以创建 Vec>具有任何行和列长度,但所有列都被限制为相同的长度。 有时我需要高效地遍历 Vec>按行
在 GLSL 中我不明白什么是“in”和“out”变量,这是什么意思?这是我从教程中复制的代码示例。 // Shader sources const GLchar* vertexSource =
例如 [[5,6][2,3][2,5][2,9][1,6]]先按第一个元素升序排序,当一个元素相等时,按第二个元素降序排序,得到[1,6],[2,9],[2,5],[2,3] ],[5,6] 最佳答案
我正在尝试为类型为Vec>的向量创建可变的迭代器 迭代器代码: pub struct IterMut { iter: &'a mut Vec>, ix: usize, inne
我是 rust 编程的新手。我想用递归实现合并排序。这是我的代码: fn merge(a: &mut Vec, b: &mut Vec) -> Vec { let mut temp: Vec
我是一名优秀的程序员,十分优秀!