- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我正在尝试基于 Pandas 数据框创建基本散点图。但是当我调用分散例程时,我收到一个错误“TypeError:无效类型提升”。重现问题的示例代码如下所示:
t1 = pd.to_datetime('2015-11-01 00:00:00')
t2 = pd.to_datetime('2015-11-02 00:00:00')
Time = pd.Series([t1, t2])
r = pd.Series([-1, 1])
df = pd.DataFrame({'Time': Time, 'Value': r})
print(df)
print(type(df.Time))
print(type(df.Time[0]))
fig = plt.figure(figsize=(x_size,y_size))
ax = fig.add_subplot(111)
ax.scatter(df.Time, y=df.Value, marker='o')
结果输出是
Time Value
0 2015-11-01 -1
1 2015-11-02 1
<class 'pandas.core.series.Series'>
<class 'pandas.tslib.Timestamp'>
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-285-f4ed0443bf4d> in <module>()
15 fig = plt.figure(figsize=(x_size,y_size))
16 ax = fig.add_subplot(111)
---> 17 ax.scatter(df.Time, y=df.Value, marker='o')
C:\Anaconda3\lib\site-packages\matplotlib\axes\_axes.py in scatter(self, x, y, s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, **kwargs)
3635 edgecolors = 'face'
3636
-> 3637 offsets = np.dstack((x, y))
3638
3639 collection = mcoll.PathCollection(
C:\Anaconda3\lib\site-packages\numpy\lib\shape_base.py in dstack(tup)
365
366 """
--> 367 return _nx.concatenate([atleast_3d(_m) for _m in tup], 2)
368
369 def _replace_zero_by_x_arrays(sub_arys):
TypeError: invalid type promotion
四处搜索我发现了一个类似的帖子Pandas Series TypeError and ValueError when using datetime这表明该错误是由系列中有多种数据类型引起的。但这似乎不是我的示例中的问题,正如我打印的类型信息所证明的那样。
请注意,如果我停止使用 pandas 日期时间对象并将“时间”设置为 float ,则可以正常工作,例如
t1 = 1.1 #
t2 = 1.2
Time = pd.Series([t1, t2])
r = pd.Series([-1, 1])
df = pd.DataFrame({'Time': Time, 'Value': r})
print(df)
print(type(df.Time))
print(type(df.Time[0]))
fig = plt.figure(figsize=(x_size,y_size))
ax = fig.add_subplot(111)
ax.scatter(df.Time, y=df.Value, marker='o')
有输出
Time Value
0 1.1 -1
1 1.2 1
<class 'pandas.core.series.Series'>
<class 'numpy.float64'>
图表看起来还不错。我不知道为什么使用日期时间会导致无效类型提升错误?我正在使用 Python 3.4.3 和 pandas 0.16.2。
最佳答案
感谢@martinvseticka。根据您指出的 numpy 代码,我认为您的评估是正确的。我能够进一步简化您的调整(并添加了第三个样本点)以获得
t1 = pd.to_datetime('2015-11-01 00:00:00')
t2 = pd.to_datetime('2015-11-02 00:00:00')
t3 = pd.to_datetime('2015-11-03 00:00:00')
Time = pd.Series([t1, t2, t3])
r = pd.Series([-1, 1, 0.5])
df = pd.DataFrame({'Time': Time, 'Value': r})
fig = plt.figure(figsize=(x_size,y_size))
ax = fig.add_subplot(111)
ax.plot_date(x=df.Time, y=df.Value, marker='o')
关键似乎是调用“plot_date”而不是“plot”。这似乎告诉 mapplotlib 不要尝试连接数组。
关于python - 试图绘制的 Pandas 类型错误,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/33676608/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!