- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我是 Python 新手,正在尝试在 pandas 数据帧上使用 sklearn 执行线性回归。这就是我所做的:
data = pd.read_csv('xxxx.csv')
之后我得到了一个包含两列的 DataFrame,我们称它们为“c1”、“c2”。现在我想对 (c1,c2) 的集合进行线性回归,所以我输入了
X=data['c1'].values
Y=data['c2'].values
linear_model.LinearRegression().fit(X,Y)
导致以下错误
IndexError: tuple index out of range
这里有什么问题?还有,我想知道
我搜索并浏览了大量网站,但似乎没有一个网站可以指导初学者正确的语法。也许对于专家来说显而易见的事情对于像我这样的新手来说并不那么明显。
你能帮忙吗?非常感谢您的宝贵时间。
PS:我注意到大量初学者问题在 stackoverflow 中被否决。请考虑这样一个事实,即对于专家用户来说似乎很明显的事情可能需要初学者几天才能弄清楚。在按下向下箭头时请谨慎行事,以免损害此讨论社区的活力。
最佳答案
假设您的 csv 看起来像这样:
c1,c2
0.000000,0.968012
1.000000,2.712641
2.000000,11.958873
3.000000,10.889784
...
我是这样生成数据的:
import numpy as np
from sklearn import datasets, linear_model
import matplotlib.pyplot as plt
length = 10
x = np.arange(length, dtype=float).reshape((length, 1))
y = x + (np.random.rand(length)*10).reshape((length, 1))
此数据保存到 test.csv(只是为了让您知道它来自哪里,显然您将使用自己的)。
data = pd.read_csv('test.csv', index_col=False, header=0)
x = data.c1.values
y = data.c2.values
print x # prints: [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
您需要查看您输入 .fit()
的数据的形状。
这里 x.shape = (10,)
但我们需要它是 (10, 1)
,见 sklearn . y
也是如此。所以我们 reshape :
x = x.reshape(length, 1)
y = y.reshape(length, 1)
现在我们创建回归对象,然后调用fit()
:
regr = linear_model.LinearRegression()
regr.fit(x, y)
# plot it as in the example at http://scikit-learn.org/
plt.scatter(x, y, color='black')
plt.plot(x, regr.predict(x), color='blue', linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()
参见 sklearn 线性回归 example .
关于python - 使用 Sklearn 对 Pandas DataFrame 进行线性回归(IndexError : tuple index out of range),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29934083/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!