- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我们知道所有大于 3 的素数都可以通过以下方式生成:
6 * k + 1
6 * k - 1
但是,我们从上述公式中生成的所有数字都不是素数。
For Example:
6 * 6 - 1 = 35 which is clearly divisible by 5.
为了消除这种情况,我使用了筛法并删除了作为上述公式生成的数字的因素的数字。
使用事实:
A number is said to be prime if it has no prime factors.
生成低于 1000 的素数。
ArrayList<Integer> primes = new ArrayList<>();
primes.add(2);//explicitly add
primes.add(3);//2 and 3
int n = 1000;
for (int i = 1; i <= (n / 6) ; i++) {
//get all the numbers which can be generated by the formula
int prod6k = 6 * i;
primes.add(prod6k - 1);
primes.add(prod6k + 1);
}
for (int i = 0; i < primes.size(); i++) {
int k = primes.get(i);
//remove all the factors of the numbers generated by the formula
for(int j = k * k; j <= n; j += k)//changed to k * k from 2 * k, Thanks to DTing
{
int index = primes.indexOf(j);
if(index != -1)
primes.remove(index);
}
}
System.out.println(primes);
但是,此方法确实可以正确生成素数。这以更快的方式运行,因为我们不需要检查我们在筛子中检查的所有数字。
我的问题是我错过了任何边缘情况吗?这会好很多,但我从未见过有人使用它。我做错了吗?
这种方法可以更优化吗?
使用 boolean[]
而不是 ArrayList
更快。
int n = 100000000;
boolean[] primes = new boolean[n + 1];
for (int i = 0; i <= n; i++)
primes[i] = false;
primes[2] = primes[3] = true;
for (int i = 1; i <= n / 6; i++) {
int prod6k = 6 * i;
primes[prod6k + 1] = true;
primes[prod6k - 1] = true;
}
for (int i = 0; i <= n; i++) {
if (primes[i]) {
int k = i;
for (int j = k * k; j <= n && j > 0; j += k) {
primes[j] = false;
}
}
}
for (int i = 0; i <= n; i++)
if (primes[i])
System.out.print(i + " ");
最佳答案
5 是您的标准生成的第一个数字。让我们看一下生成的最多 25 个数字:
5,
6, 7,8,9,10, 11,12, 13,14,15,16, 17,18, 19,20,21,22, 23,24, 25
现在,让我们看看这些相同的数字,当我们使用埃拉托色尼筛算法时:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
去掉2后:
5,
6, 7,8, 9,10, 11,12, 13,14, 15,16, 17,18, 19,20, 21,22, 23,24, 25
去掉3后:
5,
6, 7,8,9,10, 11,12, 13,14,15,16, 17,18, 19,20,21,22, 23,24, 25
这和第一组一样!请注意,它们都包括 25,它不是素数。如果我们想一想,这是一个明显的结果。考虑任意 6 个连续数字的组:
6k - 3, 6k - 2, 6k - 1, 6k, 6k + 1, 6k + 2
如果我们稍微考虑一下,我们会得到:
3*(2k - 1), 2*(3k - 1), 6k - 1, 6*(k), 6k + 1, 2*(3k + 1)
在任何 6 个连续数字的组中,其中三个可以被 2 整除,其中两个可以被 3 整除。这些正是我们迄今为止删除的数字!因此:
6k - 1
和 6k + 1
的算法与前两轮埃拉托色尼筛法完全相同。与 Sieve 相比,这也是一个相当不错的速度改进,因为我们不必添加所有这些额外的元素来移除它们。这解释了为什么您的算法有效以及为什么它不会遗漏任何情况;因为它和筛子完全一样。
无论如何,我同意一旦你生成了素数,你的 boolean
方式是迄今为止最快的。我已经使用你的 ArrayList 设置了一个基准
方式,您的 boolean[]
方式,以及我自己使用 LinkedList
和 iterator.remove()
的方式(因为删除速度很快在 LinkedList
中。这是我的测试工具的代码。请注意,我运行了 12 次测试以确保 JVM 已预热,我打印列表的大小并更改 n
试图防止过多的 branch prediction 优化。您还可以通过在初始种子中使用 += 6
而不是 prod6k 在所有三种方法中获得更快的速度
:
import java.util.*;
public class PrimeGenerator {
public static List<Integer> generatePrimesArrayList(int n) {
List<Integer> primes = new ArrayList<>(getApproximateSize(n));
primes.add(2);// explicitly add
primes.add(3);// 2 and 3
for (int i = 6; i <= n; i+=6) {
// get all the numbers which can be generated by the formula
primes.add(i - 1);
primes.add(i + 1);
}
for (int i = 0; i < primes.size(); i++) {
int k = primes.get(i);
// remove all the factors of the numbers generated by the formula
for (int j = k * k; j <= n; j += k)// changed to k * k from 2 * k, Thanks
// to DTing
{
int index = primes.indexOf(j);
if (index != -1)
primes.remove(index);
}
}
return primes;
}
public static List<Integer> generatePrimesBoolean(int n) {
boolean[] primes = new boolean[n + 5];
for (int i = 0; i <= n; i++)
primes[i] = false;
primes[2] = primes[3] = true;
for (int i = 6; i <= n; i+=6) {
primes[i + 1] = true;
primes[i - 1] = true;
}
for (int i = 0; i <= n; i++) {
if (primes[i]) {
int k = i;
for (int j = k * k; j <= n && j > 0; j += k) {
primes[j] = false;
}
}
}
int approximateSize = getApproximateSize(n);
List<Integer> primesList = new ArrayList<>(approximateSize);
for (int i = 0; i <= n; i++)
if (primes[i])
primesList.add(i);
return primesList;
}
private static int getApproximateSize(int n) {
// Prime Number Theorem. Round up
int approximateSize = (int) Math.ceil(((double) n) / (Math.log(n)));
return approximateSize;
}
public static List<Integer> generatePrimesLinkedList(int n) {
List<Integer> primes = new LinkedList<>();
primes.add(2);// explicitly add
primes.add(3);// 2 and 3
for (int i = 6; i <= n; i+=6) {
// get all the numbers which can be generated by the formula
primes.add(i - 1);
primes.add(i + 1);
}
for (int i = 0; i < primes.size(); i++) {
int k = primes.get(i);
for (Iterator<Integer> iterator = primes.iterator(); iterator.hasNext();) {
int primeCandidate = iterator.next();
if (primeCandidate == k)
continue; // Always skip yourself
if (primeCandidate == (primeCandidate / k) * k)
iterator.remove();
}
}
return primes;
}
public static void main(String... args) {
int initial = 4000;
for (int i = 0; i < 12; i++) {
int n = initial * i;
long start = System.currentTimeMillis();
List<Integer> result = generatePrimesArrayList(n);
long seconds = System.currentTimeMillis() - start;
System.out.println(result.size() + "\tArrayList Seconds: " + seconds);
start = System.currentTimeMillis();
result = generatePrimesBoolean(n);
seconds = System.currentTimeMillis() - start;
System.out.println(result.size() + "\tBoolean Seconds: " + seconds);
start = System.currentTimeMillis();
result = generatePrimesLinkedList(n);
seconds = System.currentTimeMillis() - start;
System.out.println(result.size() + "\tLinkedList Seconds: " + seconds);
}
}
}
以及最近几次试验的结果:
3432 ArrayList Seconds: 430
3432 Boolean Seconds: 0
3432 LinkedList Seconds: 90
3825 ArrayList Seconds: 538
3824 Boolean Seconds: 0
3824 LinkedList Seconds: 81
4203 ArrayList Seconds: 681
4203 Boolean Seconds: 0
4203 LinkedList Seconds: 100
4579 ArrayList Seconds: 840
4579 Boolean Seconds: 0
4579 LinkedList Seconds: 111
关于java - 如何使用 6*k +- 1 规则生成素数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31837761/
很难说出这里问的是什么。这个问题是含糊的、模糊的、不完整的、过于宽泛的或修辞性的,无法以目前的形式得到合理的回答。如需帮助澄清此问题以便重新打开它,visit the help center 。 已关
我们可以说 O(K + (N-K)logK)相当于O(K + N logK)对于 1 < = K <= N ? 最佳答案 简短的回答是它们不等价,这取决于k 的值。如果k等于N,那么第一个复杂度是O(
我有以下解决方案,但我从其他评论者那里听说它是 O(N * K * K),而不是 O(N * K)其中 N 是 K 列表的(最大)长度,K 是列表的数量。例如,给定列表 [1, 2, 3] 和 [4,
我试图理解这些语法结构之间的语义差异。 if ((i% k) == (l % k) == 0) 和 if ((i % k) == 0 && (l % k) == 0) 最佳答案 您的特定表达式((i
我有时会使用一维数组: A = np.array([1, 2, 3, 4]) 或 2D 阵列(使用 scipy.io.wavfile 读取单声道或立体声信号): A = np.array([[1, 2
在文档聚类过程中,作为数据预处理步骤,我首先应用奇异向量分解得到U、S和Vt 然后通过选择适当数量的特征值,我截断了 Vt,这让我从阅读的内容中得到了很好的文档-文档相关性 here .现在我正在对矩
我问的是关于 Top K 算法的问题。我认为 O(n + k log n) 应该更快,因为……例如,如果您尝试插入 k = 300 和 n = 100000000,我们可以看到 O(n + k log
这个问题与另一个问题R:sample()密切相关。 。我想在 R 中找到一种方法来列出 k 个数字的所有排列,总和为 k,其中每个数字都是从 0:k 中选择的。如果k=7,我可以从0,1,...,7中
我目前正在评估基于隐式反馈的推荐系统。我对排名任务的评估指标有点困惑。具体来说,我希望通过精确度和召回率来进行评估。 Precision@k has the advantage of not requ
我在 Python 中工作,需要找到一种算法来生成所有可能的 n 维 k,k,...,k 数组,每个数组都沿轴有一行 1。因此,该函数接受两个数字 - n 和 k,并且应该返回一个数组列表,其中包含沿
我们有 N 对。每对包含两个数字。我们必须找到最大数 K,这样如果我们从给定的 N 对中取 J (1 2,如果我们选择三对 (1,2),我们只有两个不同的数字,即 1 和 2。 从一个开始检查每个可能
鉴于以下问题,我不能完全确定我当前的解决方案: 问题: 给定一个包含 n 元素的最大堆,它存储在数组 A 中,是否可以打印所有最大的 K 元素在 O(K*log(K)) 中? 我的回答: 是的,是的,
我明白了: val vector: RDD[(String, Array[String])] = [("a", {v1,v2,..}),("b", {u1,u2,..})] 想转换成: RDD[(St
我有 X 个正数,索引为 x_i。每个 x_i 需要进入 K 组之一(其中 K 是预先确定的)。令 S_j 为 K_j 中所有 x_i 的总和。我需要分配所有 x_i 以使所有 S_j 的方差最小化。
关闭。这个问题是not reproducible or was caused by typos .它目前不接受答案。 这个问题是由于错别字或无法再重现的问题引起的。虽然类似的问题可能是on-topi
我正在研究寻找原始数的算法,看到下面的语句,我不明白为什么。 while (k*k <= n) 优于 while (k <= Math.sqrt(n)) 是因为函数调用吗?该调用函数使用更多资源。 更
我想找到一种尽可能快的方法来将两个小 bool 矩阵相乘,其中小意味着 8x8、9x9 ... 16x16。这个例程会被大量使用,所以需要非常高效,所以请不要建议直截了当的解决方案应该足够快。 对于
有没有一种惯用的方法来获取 Set和 Function ,并获得 Map实时取景? (即 Map 由 Set 和 Function 组合支持,例如,如果将元素添加到 Set ,则相应的条目也存在于 M
这个问题在这里已经有了答案: Can a local variable's memory be accessed outside its scope? (20 个答案) returning addr
给定一个矩阵:- k = [1 2 3 ; 4 5 6 ; 7 8 NaN]; 如果我想用 0 替换一个数字,比如 2,我可以使用这个:k(k==2) =
我是一名优秀的程序员,十分优秀!