- mongodb - 在 MongoDB mapreduce 中,如何展平值对象?
- javascript - 对象传播与 Object.assign
- html - 输入类型 ="submit"Vs 按钮标签它们可以互换吗?
- sql - 使用 MongoDB 而不是 MS SQL Server 的优缺点
我了解将函数作为组键传递,每个索引值调用一次函数,返回值用作组名称。我不知道如何在列值上调用函数。
所以我可以这样做:
people = pd.DataFrame(np.random.randn(5, 5),
columns=['a', 'b', 'c', 'd', 'e'],
index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
def GroupFunc(x):
if len(x) > 3:
return 'Group1'
else:
return 'Group2'
people.groupby(GroupFunc).sum()
这会将数据分成两组,其中一组的索引值长度为 3 或以下,另一组的索引值长度为 3 或以上。但是如何传递其中一个列值?例如,如果每个索引点的 d 列值大于 1。我意识到我可以执行以下操作:
people.groupby(people.a > 1).sum()
但我想知道如何在用户定义的函数中执行此操作以供将来引用。
类似:
def GroupColFunc(x):
if x > 1:
return 'Group1'
else:
return 'Group2'
但是我怎么调用它呢?我试过了
people.groupby(GroupColFunc(people.a))
和类似的变体,但这不起作用。
如何将列值传递给函数?我将如何传递多个列值,例如例如,是否按 people.a > people.b 分组?
最佳答案
要按 > 1 分组,您可以像这样定义函数:
>>> def GroupColFunc(df, ind, col):
... if df[col].loc[ind] > 1:
... return 'Group1'
... else:
... return 'Group2'
...
然后这样调用它
>>> people.groupby(lambda x: GroupColFunc(people, x, 'a')).sum()
a b c d e
Group2 -2.384614 -0.762208 3.359299 -1.574938 -2.65963
或者你可以只使用匿名函数:
>>> people.groupby(lambda x: 'Group1' if people['b'].loc[x] > people['a'].loc[x] else 'Group2').sum()
a b c d e
Group1 -3.280319 -0.007196 1.525356 0.324154 -1.002439
Group2 0.895705 -0.755012 1.833943 -1.899092 -1.657191
如 documentation 中所述, 你也可以通过提供标签的 Series 进行分组 -> 组名映射:
>>> mapping = np.where(people['b'] > people['a'], 'Group1', 'Group2')
>>> mapping
Joe Group2
Steve Group1
Wes Group2
Jim Group1
Travis Group1
dtype: string48
>>> people.groupby(mapping).sum()
a b c d e
Group1 -3.280319 -0.007196 1.525356 0.324154 -1.002439
Group2 0.895705 -0.755012 1.833943 -1.899092 -1.657191
关于python - Groupby 与用户定义的函数 Pandas,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/19615760/
给定输入: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 将数字按奇数或偶数分组,然后按小于或大于 5 分组。 预期输出: [[1, 3, 5], [2, 4], [6, 8, 10
编辑: @coldspeed、@wen-ben、@ALollz 指出了我在字符串 np.nan 中犯的新手错误。答案很好,所以我不删除这个问题来保留那些答案。 原文: 我读过这个问题/答案 What'
我试图概括我提出的问题 here . mlb 数据框看起来像 Player Position Salary Year 0 Mike Wit
我认为我不需要共享整个数据框,但基本上,这是有问题的代码行(当然,已经导入了 pandas) divstack = df[df['Competitor']=='Emma Slabach'].group
我面临下一个问题:我有组(按 ID),对于所有这些组,我需要应用以下代码:如果组内位置之间的距离在 3 米以内,则需要将它们添加在一起,因此将创建一个新组(代码如何创建我在下面显示的组)。现在,我想要
我有以下数据: ,dateTime,magnitude,occurrence,dateTime_s 1,2017-11-20 08:00:09.052260,12861,1,2017-11-20 08
我按感兴趣的列对 df 进行分组: grouped = df.groupby('columnA') 现在我只想保留至少有 5 名成员的组: grouped.filter(lambda x: len(x
数据是一个时间序列,许多成员 ID 与许多类别相关联: data_df = pd.DataFrame({'Date': ['2018-09-14 00:00:22',
选择 u.UM_TOKEN_NO 、u.UM_FULLNAME、u.SECTOR、u.department_name、t.TS_PROJECT_CODE、sum(t.TS_TOTAL_HRS) 来自
我有这两个表: +---------------+-------------+---------------------+----------+---------+ | items_ordered |
我正在使用 groupby 和 sum 快速汇总两个数据集 一个包含: sequence shares 1 100 2 200 3 50 1 2
这个问题在这里已经有了答案: list around groupby results in empty groups (3 个答案) itertools groupby object not out
我有一组行,我想按标识符的值进行分组 - 存在于每一行中 - 然后对将作为结果的组进行进一步的隔离处理。 我的数据框是这样的: In [50]: df Out[50]: groupkey b
假设您要在全局范围内销售产品,并且希望在某个主要城市的某个地方设立销售办事处。您的决定将完全基于销售数字。 这将是您的(简化的)销售数据: df={ 'Product':'Chair', 'Count
我有一个将数据分组两次的查询: var query = (from a in Context.SetA() from b in Context.SetB().Where(x => x.aId == a
我有一个这种格式的数据框: value identifier 2007-01-01 0.087085 55 2007-01-01 0.703249
这个问题在这里已经有了答案: python groupby behaviour? (3 个答案) 关闭 4 年前。 我有一个这样的列表 [u'201003', u'200403', u'200803
在 Python 中,我可以使用 itertools.groupby 将具有相同键的连续元素分组。 : >>> items = [(1, 2), (1, 5), (1, 3), (2, 9), (3,
无法翻译以下 GroupBy 查询并将引发错误:不支持客户端 GroupBy IEnumerable ids = new List { 1, 2, 3 }; var q = db.Comments.W
考虑一个 Spark DataFrame,其中只有很少的列。目标是对其执行 groupBy 操作,而不将其转换为 Pandas DataFrame。等效的 Pandas groupBy 代码如下所示:
我是一名优秀的程序员,十分优秀!