gpt4 book ai didi

python - DBSCAN 用于地理位置数据的聚类

转载 作者:IT老高 更新时间:2023-10-28 20:50:10 47 4
gpt4 key购买 nike

我有一个包含纬度和经度对的数据框。

这是我的数据框的样子。

    order_lat  order_long
0 19.111841 72.910729
1 19.111342 72.908387
2 19.111342 72.908387
3 19.137815 72.914085
4 19.119677 72.905081
5 19.119677 72.905081
6 19.119677 72.905081
7 19.120217 72.907121
8 19.120217 72.907121
9 19.119677 72.905081
10 19.119677 72.905081
11 19.119677 72.905081
12 19.111860 72.911346
13 19.111860 72.911346
14 19.119677 72.905081
15 19.119677 72.905081
16 19.119677 72.905081
17 19.137815 72.914085
18 19.115380 72.909144
19 19.115380 72.909144
20 19.116168 72.909573
21 19.119677 72.905081
22 19.137815 72.914085
23 19.137815 72.914085
24 19.112955 72.910102
25 19.112955 72.910102
26 19.112955 72.910102
27 19.119677 72.905081
28 19.119677 72.905081
29 19.115380 72.909144
30 19.119677 72.905081
31 19.119677 72.905081
32 19.119677 72.905081
33 19.119677 72.905081
34 19.119677 72.905081
35 19.111860 72.911346
36 19.111841 72.910729
37 19.131674 72.918510
38 19.119677 72.905081
39 19.111860 72.911346
40 19.111860 72.911346
41 19.111841 72.910729
42 19.111841 72.910729
43 19.111841 72.910729
44 19.115380 72.909144
45 19.116625 72.909185
46 19.115671 72.908985
47 19.119677 72.905081
48 19.119677 72.905081
49 19.119677 72.905081
50 19.116183 72.909646
51 19.113827 72.893833
52 19.119677 72.905081
53 19.114100 72.894985
54 19.107491 72.901760
55 19.119677 72.905081

我想聚集这些彼此最近的点(200米距离),下面是我的距离矩阵。

from scipy.spatial.distance import pdist, squareform
distance_matrix = squareform(pdist(X, (lambda u,v: haversine(u,v))))

array([[ 0. , 0.2522482 , 0.2522482 , ..., 1.67313071,
1.05925366, 1.05420922],
[ 0.2522482 , 0. , 0. , ..., 1.44111548,
0.81742536, 0.98978355],
[ 0.2522482 , 0. , 0. , ..., 1.44111548,
0.81742536, 0.98978355],
...,
[ 1.67313071, 1.44111548, 1.44111548, ..., 0. ,
1.02310118, 1.22871515],
[ 1.05925366, 0.81742536, 0.81742536, ..., 1.02310118,
0. , 1.39923529],
[ 1.05420922, 0.98978355, 0.98978355, ..., 1.22871515,
1.39923529, 0. ]])

然后我在距离矩阵上应用 DBSCAN 聚类算法。

 from sklearn.cluster import DBSCAN

db = DBSCAN(eps=2,min_samples=5)
y_db = db.fit_predict(distance_matrix)

我不知道如何选择 eps 和 min_samples 值。它将太远的点聚集在一个簇中。(距离约2公里)是因为它在聚类时计算欧几里得距离吗?请帮忙。

最佳答案

您可以使用 scikit-learn 的 DBSCAN 对空间经纬度数据进行聚类,而无需预先计算距离矩阵。

db = DBSCAN(eps=2/6371., min_samples=5, algorithm='ball_tree', metric='haversine').fit(np.radians(coordinates))

这来自 clustering spatial data with scikit-learn DBSCAN 上的本教程。特别是,请注意 eps 值仍然是 2km,但它除以 6371 以将其转换为弧度。另外,请注意 .fit() 采用弧度单位的坐标作为半正弦度量。

关于python - DBSCAN 用于地理位置数据的聚类,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34579213/

47 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com