gpt4 book ai didi

java - 什么决定了 Java ForkJoinPool 创建的线程数?

转载 作者:IT老高 更新时间:2023-10-28 20:45:41 24 4
gpt4 key购买 nike

据我了解 ForkJoinPool,该池创建固定数量的线程(默认值:核心数)并且永远不会创建更多线程(除非应用程序通过使用managedBlock)。

然而,使用 ForkJoinPool.getPoolSize() 我发现在一个创建 30,000 个任务 (RecursiveAction) 的程序中,ForkJoinPool 执行那些任务平均使用 700 个线程(每次创建任务时都会计算线程数)。这些任务不做 I/O,而是纯粹的计算;唯一的任务间同步是调用 ForkJoinTask.join() 并访问 AtomicBoolean,即没有线程阻塞操作。

由于我理解的 join() 不会阻塞调用线程,因此池中的任何线程都没有理由阻塞,因此(我假设)应该没有有理由创建更多线程(这显然正在发生)。

那么,为什么 ForkJoinPool 会创建这么多线程?哪些因素决定了创建的线程数?

我曾希望可以在不发布代码的情况下回答这个问题,但这里是应要求提供的。这段代码是从一个四倍大小的程序中摘录出来的,精简到了基本部分;它不会按原样编译。如果需要,我当然也可以发布完整的程序。

程序使用深度优先搜索在迷宫中搜索从给定起点到给定终点的路径。保证存在解决方案。主要逻辑在 SolverTaskcompute() 方法中:一个 RecursiveAction 从某个给定点开始,并继续与所有可到达的相邻点当前点。它不是在每个分支点创建一个新的 SolverTask(这会创建太多的任务),而是将除一个之外的所有邻居推送到回溯堆栈中以供稍后处理,并仅继续处理未推送的一个邻居到堆栈。一旦它以这种方式到达死胡同,最近推送到回溯堆栈的点被弹出,并且从那里继续搜索(相应地削减从 taks 的起点构建的路径)。一旦任务发现其回溯堆栈大于某个阈值,就会创建一个新任务;从那时起,该任务会继续从其回溯堆栈中弹出直到耗尽,但在到达分支点时不会将任何进一步的点插入其堆栈,而是为每个这样的点创建一个新任务。因此,可以使用堆栈限制阈值来调整任务的大小。

我在上面引用的数字(“平均 30,000 个任务,700 个线程”)来自于对 5000x5000 个单元格的迷宫进行搜索。所以,这里是基本代码:

class SolverTask extends RecursiveTask<ArrayDeque<Point>> {
// Once the backtrack stack has reached this size, the current task
// will never add another cell to it, but create a new task for each
// newly discovered branch:
private static final int MAX_BACKTRACK_CELLS = 100*1000;

/**
* @return Tries to compute a path through the maze from local start to end
* and returns that (or null if no such path found)
*/
@Override
public ArrayDeque<Point> compute() {
// Is this task still accepting new branches for processing on its own,
// or will it create new tasks to handle those?
boolean stillAcceptingNewBranches = true;
Point current = localStart;
ArrayDeque<Point> pathFromLocalStart = new ArrayDeque<Point>(); // Path from localStart to (including) current
ArrayDeque<PointAndDirection> backtrackStack = new ArrayDeque<PointAndDirection>();
// Used as a stack: Branches not yet taken; solver will backtrack to these branching points later

Direction[] allDirections = Direction.values();

while (!current.equals(end)) {
pathFromLocalStart.addLast(current);
// Collect current's unvisited neighbors in random order:
ArrayDeque<PointAndDirection> neighborsToVisit = new ArrayDeque<PointAndDirection>(allDirections.length);
for (Direction directionToNeighbor: allDirections) {
Point neighbor = current.getNeighbor(directionToNeighbor);

// contains() and hasPassage() are read-only methods and thus need no synchronization
if (maze.contains(neighbor) && maze.hasPassage(current, neighbor) && maze.visit(neighbor))
neighborsToVisit.add(new PointAndDirection(neighbor, directionToNeighbor.opposite));
}
// Process unvisited neighbors
if (neighborsToVisit.size() == 1) {
// Current node is no branch: Continue with that neighbor
current = neighborsToVisit.getFirst().getPoint();
continue;
}
if (neighborsToVisit.size() >= 2) {
// Current node is a branch
if (stillAcceptingNewBranches) {
current = neighborsToVisit.removeLast().getPoint();
// Push all neighbors except one on the backtrack stack for later processing
for(PointAndDirection neighborAndDirection: neighborsToVisit)
backtrackStack.push(neighborAndDirection);
if (backtrackStack.size() > MAX_BACKTRACK_CELLS)
stillAcceptingNewBranches = false;
// Continue with the one neighbor that was not pushed onto the backtrack stack
continue;
} else {
// Current node is a branch point, but this task does not accept new branches any more:
// Create new task for each neighbor to visit and wait for the end of those tasks
SolverTask[] subTasks = new SolverTask[neighborsToVisit.size()];
int t = 0;
for(PointAndDirection neighborAndDirection: neighborsToVisit) {
SolverTask task = new SolverTask(neighborAndDirection.getPoint(), end, maze);
task.fork();
subTasks[t++] = task;
}
for (SolverTask task: subTasks) {
ArrayDeque<Point> subTaskResult = null;
try {
subTaskResult = task.join();
} catch (CancellationException e) {
// Nothing to do here: Another task has found the solution and cancelled all other tasks
}
catch (Exception e) {
e.printStackTrace();
}
if (subTaskResult != null) { // subtask found solution
pathFromLocalStart.addAll(subTaskResult);
// No need to wait for the other subtasks once a solution has been found
return pathFromLocalStart;
}
} // for subTasks
} // else (not accepting any more branches)
} // if (current node is a branch)
// Current node is dead end or all its neighbors lead to dead ends:
// Continue with a node from the backtracking stack, if any is left:
if (backtrackStack.isEmpty()) {
return null; // No more backtracking avaible: No solution exists => end of this task
}
// Backtrack: Continue with cell saved at latest branching point:
PointAndDirection pd = backtrackStack.pop();
current = pd.getPoint();
Point branchingPoint = current.getNeighbor(pd.getDirectionToBranchingPoint());
// DEBUG System.out.println("Backtracking to " + branchingPoint);
// Remove the dead end from the top of pathSoFar, i.e. all cells after branchingPoint:
while (!pathFromLocalStart.peekLast().equals(branchingPoint)) {
// DEBUG System.out.println(" Going back before " + pathSoFar.peekLast());
pathFromLocalStart.removeLast();
}
// continue while loop with newly popped current
} // while (current ...
if (!current.equals(end)) {
// this task was interrupted by another one that already found the solution
// and should end now therefore:
return null;
} else {
// Found the solution path:
pathFromLocalStart.addLast(current);
return pathFromLocalStart;
}
} // compute()
} // class SolverTask

@SuppressWarnings("serial")
public class ParallelMaze {

// for each cell in the maze: Has the solver visited it yet?
private final AtomicBoolean[][] visited;

/**
* Atomically marks this point as visited unless visited before
* @return whether the point was visited for the first time, i.e. whether it could be marked
*/
boolean visit(Point p) {
return visited[p.getX()][p.getY()].compareAndSet(false, true);
}

public static void main(String[] args) {
ForkJoinPool pool = new ForkJoinPool();
ParallelMaze maze = new ParallelMaze(width, height, new Point(width-1, 0), new Point(0, height-1));
// Start initial task
long startTime = System.currentTimeMillis();
// since SolverTask.compute() expects its starting point already visited,
// must do that explicitly for the global starting point:
maze.visit(maze.start);
maze.solution = pool.invoke(new SolverTask(maze.start, maze.end, maze));
// One solution is enough: Stop all tasks that are still running
pool.shutdownNow();
pool.awaitTermination(Integer.MAX_VALUE, TimeUnit.DAYS);
long endTime = System.currentTimeMillis();
System.out.println("Computed solution of length " + maze.solution.size() + " to maze of size " +
width + "x" + height + " in " + ((float)(endTime - startTime))/1000 + "s.");
}

最佳答案

stackoverflow上有相关问题:

ForkJoinPool stalls during invokeAll/join

ForkJoinPool seems to waste a thread

我对正在发生的事情做了一个可运行的精简版本(我使用的 jvm 参数:-Xms256m -Xmx1024m -Xss8m):

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ForkJoinPool;
import java.util.concurrent.RecursiveAction;
import java.util.concurrent.RecursiveTask;
import java.util.concurrent.TimeUnit;

public class Test1 {

private static ForkJoinPool pool = new ForkJoinPool(2);

private static class SomeAction extends RecursiveAction {

private int counter; //recursive counter
private int childrenCount=80;//amount of children to spawn
private int idx; // just for displaying

private SomeAction(int counter, int idx) {
this.counter = counter;
this.idx = idx;
}

@Override
protected void compute() {

System.out.println(
"counter=" + counter + "." + idx +
" activeThreads=" + pool.getActiveThreadCount() +
" runningThreads=" + pool.getRunningThreadCount() +
" poolSize=" + pool.getPoolSize() +
" queuedTasks=" + pool.getQueuedTaskCount() +
" queuedSubmissions=" + pool.getQueuedSubmissionCount() +
" parallelism=" + pool.getParallelism() +
" stealCount=" + pool.getStealCount());
if (counter <= 0) return;

List<SomeAction> list = new ArrayList<>(childrenCount);
for (int i=0;i<childrenCount;i++){
SomeAction next = new SomeAction(counter-1,i);
list.add(next);
next.fork();
}


for (SomeAction action:list){
action.join();
}
}
}

public static void main(String[] args) throws Exception{
pool.invoke(new SomeAction(2,0));
}
}

显然,当您执行连接时,当前线程会看到所需的任务尚未完成,并为自己执行另一个任务。

它发生在 java.util.concurrent.ForkJoinWorkerThread#joinTask

然而,这个新任务产生了更多相同的任务,但它们在池中找不到线程,因为线程被锁定在连接中。而且由于它无法知道释放它们需要多少时间(线程可能处于无限循环或永远死锁),因此会产生新线程(补偿加入的线程为 Louis Wasserman 提到):java.util.concurrent.ForkJoinPool#signalWork

因此,为了防止这种情况,您需要避免递归生成任务。

例如,如果在上面的代码中将初始参数设置为 1,即使将 childrenCount 增加十倍, Activity 线程数也会为 2。

另请注意,虽然 Activity 线程数量增加,但运行线程数量小于或等于并行度

关于java - 什么决定了 Java ForkJoinPool 创建的线程数?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10797568/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com